C12–C13 alcohol glycidyl ether

Last updated
C12–C13 alcohol glycidyl ether
Alkyl glycidyl ether.svg
n = 10-11
Identifiers
3D model (JSmol)
EC Number
  • 271-846-8
  • CCCCCCCCCCCCCOCC1CO1.CCCCCCCCCCCCOCC1CO1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

C12-C13 alcohol glycidyl ether is a mixture of organic chemicals in the glycidyl ether family. [1] It is a mixture of mainly 12 and 13 carbon chain alcohols, also called fatty alcohols that have been glycidated. [2] It is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction. [3] [4] It has the CAS number 120547-52-6. [5]

Contents

Manufacture

A fatty alcohol mixture rich in C12-C13 alcohols is placed in a reactor with a Lewis acid catalyst. Epichlorohydrin is then added slowly to control the exotherm. The reaction results in the formation of the halohydrins. [6] This is followed by a caustic dehydrochlorination, to form C12-C13 alcohol glycidyl ether. [7] The waste products are water and sodium chloride and excess caustic soda. [8] One of the quality control tests would involve measuring the Epoxy value by determination of the epoxy equivalent weight.

Synonyms

The material has a number of synonyms. [9]

Uses

As an epoxy modifier it is classed as an epoxy reactive diluent. [10] It is one of a family of glycidyl ethers available used for viscosity reduction of epoxy resins. [11] [12] These are then further formulated into coatings, sealants, adhesives, and elastomers. [13] [14] Resins with this diluent tend to show improved workability. [15] It is also used to synthesize other molecules. [16] [17] The use of the diluent does effect mechanical properties and microstructure of epoxy resins. [18] [19]

Toxicology

The toxicology is fairly well known, and it is classed as a skin irritant. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Epoxy</span> Type of material

Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.

<span class="mw-page-title-main">Bisphenol A diglycidyl ether</span> Chemical compound

Bisphenol A diglycidyl ether is an organic compound and is a liquid epoxy resin. The compound is a colorless viscous liquid. It is a key component of many epoxy resin formulations. Addition of further Bisphenol A and a catalyst and heat can produce Bisphenol A glycidyl ether epoxy resins of higher molecular weight that are solid.

<span class="mw-page-title-main">Cyclohexanedimethanol</span> Chemical compound

Cyclohexanedimethanol (CHDM) is a mixture of isomeric organic compounds with formula C6H10(CH2OH)2. It is a colorless low-melting solid used in the production of polyester resins. Commercial samples consist of a mixture of cis and trans isomers. It is a di-substituted derivative of cyclohexane and is classified as a diol, meaning that it has two OH functional groups. Commercial CHDM typically has a cis/trans ratio of 30:70.

n-Butyl glycidyl ether is an industrial chemical used in adhesives, sealants, and as a paint or coating additive. It is principally used to reduce the viscosity of epoxy resin systems.

<span class="mw-page-title-main">Reactive diluent</span>

Reactive diluents are substances which reduce the viscosity of a lacquer or resin for processing and become part of the lacquer or coating during its subsequent curing via copolymerization. A non-reactive diluent would be a solvent or plasticizer.

2-Ethylhexyl glycidyl ether is a liquid organic molecule with formula C11H22O2 an industrial chemical used to reduce the viscosity of epoxy resins. These are then used in adhesives, sealants, and paints or coatings. It has the CAS Registry Number of 2461-15-6. It has the IUPAC name of 2-(2-ethylhexoxymethyl)oxirane. It also finds use in other polymer based applications.

<i>o</i>-Cresyl glycidyl ether Chemical compound

o-Cresyl glycidyl ether (ortho-cresyl glycidyl ether, o-CGE) is a liquid aromatic organic chemical compound and chemically a glycidyl ether. It has the formula C10H12O2 and the CAS Registry Number 2210-79-9. It is one of a number of glycidyl ethers available commercially that are used to reduce the viscosity of epoxy resins. These are then further used in coatings, sealants, adhesives and elastomers.

Neopentyl glycol diglycidyl ether (NPGDGE) is an organic chemical in the glycidyl ether family. It is aliphatic and a colorless liquid. It has the formula C11H20O4 and the CAS registry number of 17557-23-2. It has two oxirane groups per molecule. Its principle use is in modifying epoxy resins.

1,4-Butanediol diglycidyl ether (B14DODGE) is an organic chemical in the glycidyl ether family. It is aliphatic and a colorless liquid. It has two epoxide (oxirane) groups per molecule. Its main use is in modifying epoxy resins especially viscosity reduction.

1,6-Hexanediol diglycidyl ether is an organic chemical in the glycidyl ether family. It is an aliphatic compound that is a colorless liquid. It has two epoxide (oxirane) groups per molecule. Its main use is in modifying epoxy resins especially viscosity reduction whilst flexibilizing. It is REACH registered.

1,4-Cyclohexanedimethanol diglycidyl ether is an organic chemical in the glycidyl ether family. It has the formula C14H24O4 and the IUPAC name is 2-[[4-(oxiran-2-ylmethoxymethyl)cyclohexyl]methoxymethyl]oxirane, and the CAS number 14228-73-0. It is It is REACH registered in Europe. It is an industrial chemical and a key use is in the reduction of viscosity of epoxy resin systems functioning as a reactive diluent.

<span class="mw-page-title-main">C12–C14 alcohol glycidyl ether</span> Chemical compound

C12-C14 alcohol glycidyl ether (AGE) is an organic chemical in the glycidyl ether family. It is a mixture of mainly 12 and 14 carbon chain alcohols, also called fatty alcohols that have been glycidated. It is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction. It has the CAS number 68609-97-2 but the IUPAC name is more complex as it is a mixture and is 2-(dodecoxymethyl)oxirane;2-(tetradecoxymethyl)oxirane;2-(tridecoxymethyl)oxirane. Other names include dodecyl and tetradecyl glycidyl ethers and alkyl (C12-C14) glycidyl ether.

<span class="mw-page-title-main">Trimethylolpropane triglycidyl ether</span> Chemical compound

Trimethylolpropane triglycidyl ether (TMPTGE) is an organic chemical in the glycidyl ether family. It has the formula C15H26O6 and the IUPAC name is 2-[2,2-bis(oxiran-2-ylmethoxymethyl)butoxymethyl]oxirane, and the CAS number 3454-29-3. It also has another CAS number of 30499-70-8 A key use is as a modifier for epoxy resins as a reactive diluent.

<span class="mw-page-title-main">Castor oil glycidyl ether</span> Chemical compound

Castor oil glycidyl ether is a liquid organic chemical in the glycidyl ether family. It is sometimes called castor oil triglycidyl ether. It has the theoretical formula C66H116O12 and the CAS number 14228-73-0. The IUPAC name is 2,3-bis[12-(oxiran-2-ylmethoxy)octadec-9-enoyloxy]propyl 12-(oxiran-2-ylmethoxy)octadec-9-enoate. A key use is acting as a modifier for epoxy resins as a reactive diluent that adds flexibility and improved mechanical properties.

<span class="mw-page-title-main">Trimethylolethane triglycidyl ether</span> Chemical compound

Trimethylolethane triglycidyl ether (TMETGE) is an organic chemical in the glycidyl ether family. It has the formula C14H24O6 and the IUPAC name is 2-({2-methyl-3-[(oxiran-2-yl)methoxy]-2-{[(oxiran-2-yl)methoxy]methyl}propoxy}methyl)oxirane. The CAS number is 68460-21-9. A key use is as a modifier for epoxy resins as a reactive diluent.

<span class="mw-page-title-main">Poly(propylene glycol) diglycidyl ether</span> Chemical compound

Poly(propylene glycol) diglycidyl ether (PPGDGE) is an organic chemical in the glycidyl ether family. There are a number of variations depending on the starting molecular weight of the polypropylene glycol. They have the formula (C3H6O)n.C6H10O3 and the IUPAC name is Poly[oxy(methyl-1,2-ethanediyl)],a-(2-oxiranylmethyl)-w-(2-oxiranylmethoxy)- A key use is as a modifier for epoxy resins as a reactive diluent and flexibilizer. It is REACH registered.

<span class="mw-page-title-main">Diethylene glycol diglycidyl ether</span> Chemical compound

Diethylene glycol diglycidyl ether (DEGDGE) is an organic chemical in the glycidyl ether family with the formula C10H18O5.. The oxirane functionality makes it useful as a reactive diluent for epoxy resin viscosity reduction.

<span class="mw-page-title-main">Diglycidyl resorcinol ether</span> Chemical compound

Diglycidyl resorcinol ether, also called Resorcinol diglycidyl ether (RDGE) is a liquid aromatic organic chemical compound and chemically a glycidyl ether.

<span class="mw-page-title-main">Phenyl glycidyl ether</span> Chemical compound

Phenyl glycidyl ether, is a liquid aromatic organic chemical in the glycidyl ether class of compounds. It has the formula C9H10O2. It has the CAS Registry Number 122-60-1 and the IUPAC name of 2-(phenoxymethyl)oxirane. A key use is in the viscosity reduction of epoxy resin systems. It is REACH registered and on EINECS under the name 2,3-epoxypropyl phenyl ether.

<span class="mw-page-title-main">Diglycidyl aniline</span> Chemical compound

Diglycidyl aniline is an aromatic organic chemical in the glycidyl compound family. It is used to reduce the viscosity of epoxy resin systems. It has the empirical formula C12H15NO2 and the IUPAC name is N,N-bis(oxiran-2-ylmethyl)aniline. The CAS number is 2095-06-9. It is REACH registered in Europe with the EC number 218-259-5. A key use is in the viscosity reduction of epoxy resin systems functioning as a reactive diluent.

References

  1. Chambers, Michael. "ChemIDplus - 120547-52-6 - Oxirane, 2-((C12-13-alkyloxy)methyl) derivs. - Searchable synonyms, formulas, resource links, and other chemical information". chem.nlm.nih.gov. Archived from the original on 2022-04-29. Retrieved 2022-04-29.
  2. "120547-52-6 CAS MSDS (Oxirane, mono(C12-13-alkyloxy)methyl derivs.) Melting Point Boiling Point Density CAS Chemical Properties". www.chemicalbook.com. Archived from the original on 2022-04-29. Retrieved 2022-04-29.
  3. Jagtap, Ameya Rajendra; More, Aarti (2022-08-01). "Developments in reactive diluents: a review". Polymer Bulletin. 79 (8): 5667–5708. doi:10.1007/s00289-021-03808-5. ISSN   1436-2449. S2CID   235678040.
  4. Verkoyen, Patrick; Frey, Holger (August 2020). "Long‐Chain Alkyl Epoxides and Glycidyl Ethers: An Underrated Class of Monomers". Macromolecular Rapid Communications. 41 (15): 2000225. doi: 10.1002/marc.202000225 . ISSN   1022-1336. PMID   32567153. S2CID   219973760.
  5. "Alkyl (C12-C13) glycidyl ether - Hazardous Agents | Haz-Map". haz-map.com. Archived from the original on 2022-05-12. Retrieved 2022-04-29.
  6. "Process for the preparation of glycidyl ethers- US Patent 5162547" (PDF). November 1992.
  7. SJÖVOLD, HENRICK (2015). "Solvent-Free Synthesis of Glycidyl Ethers : Investigating Factors Influencing the Yield of Alkyl Glycidyl Ethers Master of Science Thesis" (PDF). Chalmers University Sweden. Archived (PDF) from the original on 2017-08-15. Retrieved 2022-05-12.
  8. "Preparation method of alkyl glycidyl ether - Patent CN-113429367-A - PubChem". pubchem.ncbi.nlm.nih.gov. Archived from the original on 2022-04-12. Retrieved 2022-04-12.
  9. "120547-52-6 CAS MSDS (Oxirane, mono(C12-13-alkyloxy)methyl derivs.) Melting Point Boiling Point Density CAS Chemical Properties". www.chemicalbook.com. Archived from the original on 2022-04-29. Retrieved 2022-04-29.
  10. Monte, Salvatore J. (1998), Pritchard, Geoffrey (ed.), "Diluents and viscosity modifiers for epoxy resins", Plastics Additives: An A-Z reference, Polymer Science and Technology Series, Dordrecht: Springer Netherlands, vol. 1, pp. 211–216, doi:10.1007/978-94-011-5862-6_24, ISBN   978-94-011-5862-6, archived from the original on 2022-04-11, retrieved 2022-03-29
  11. Office, European Patent. "European publication server". data.epo.org. Archived from the original on 2022-05-12. Retrieved 2022-04-29.
  12. Ali, M.; Hammami, A. (July 2005). "Experimental modeling of the cure behavior of a formulated blend of DGEBA epoxy and C12-C14 glycidyl ether as a reactive diluent". Polymer Composites. 26 (5): 593–603. doi:10.1002/pc.20131. ISSN   0272-8397. Archived from the original on 2022-04-12. Retrieved 2022-05-12.
  13. Howarth G.A "Synthesis of a legislation compliant corrosion protection coating system based on urethane, oxazolidine and waterborne epoxy technology" pages 23,24,39 Master of Science Thesis April 1997 Imperial College London
  14. Monte, Salvatore J. (1998), Pritchard, Geoffrey (ed.), "Diluents and viscosity modifiers for epoxy resins", Plastics Additives: An A-Z reference, Polymer Science and Technology Series, Dordrecht: Springer Netherlands, vol. 1, pp. 211–216, doi:10.1007/978-94-011-5862-6_24, ISBN   978-94-011-5862-6, archived from the original on 2022-04-11, retrieved 2022-04-12
  15. Ozeren Ozgul, Eren; Ozkul, M. Hulusi (2018-01-15). "Effects of epoxy, hardener, and diluent types on the workability of epoxy mixtures". Construction and Building Materials. 158: 369–377. doi:10.1016/j.conbuildmat.2017.10.008. ISSN   0950-0618. Archived from the original on 2022-05-12. Retrieved 2022-05-12.
  16. Urata, Kouichi; Takaishi, Naotake (September 1994). "The alkyl glycidyl ether as synthetic building blocks". Journal of the American Oil Chemists' Society. 71 (9): 1027–1033. doi:10.1007/BF02542274. S2CID   96776835.
  17. Verkoyen, Patrick; Frey, Holger (August 2020). "Long‐Chain Alkyl Epoxides and Glycidyl Ethers: An Underrated Class of Monomers". Macromolecular Rapid Communications. 41 (15): 2000225. doi: 10.1002/marc.202000225 . ISSN   1022-1336. PMID   32567153.
  18. Khalina, Morteza; Beheshty, Mohammad Hosain; Salimi, Ali (2019-08-01). "The effect of reactive diluent on mechanical properties and microstructure of epoxy resins". Polymer Bulletin. 76 (8): 3905–3927. doi:10.1007/s00289-018-2577-6. ISSN   1436-2449. S2CID   105389177.
  19. Pastarnokienė, Liepa; Jonikaitė-Švėgždienė, Jūratė; Lapinskaitė, Neringa; Kulbokaitė, Rūta; Bočkuvienė, Alma; Kochanė, Tatjana; Makuška, Ričardas (2023-07-01). "The effect of reactive diluents on curing of epoxy resins and properties of the cured epoxy coatings". Journal of Coatings Technology and Research. 20 (4): 1207–1221. doi:10.1007/s11998-022-00737-4. ISSN   1935-3804. S2CID   256749849.
  20. Canada, Environment and Climate Change (2020-08-07). "Screening assessment - Epoxides and Glycidyl Ethers Group". www.canada.ca. Archived from the original on 2022-03-24. Retrieved 2022-04-29.

Further reading

External websites