CE Antliae

Last updated
CE Antliae
High-contrast coronograph image of TWA 7b (weic2512).jpg
VLT and MIRI observations of the disk and planet candidate around CE Antliae [1]
Observation data
Epoch J2000       Equinox J2000
Constellation Antlia
Right ascension 10h 42m 30.10s [2]
Declination −33° 40 16.2 [2]
Apparent magnitude  (V)10.91±0.07 [3]
Characteristics
Evolutionary stage T Tauri star [4]
Spectral type M1 [4]
Variable type rotational variable, [5] flare star [6]
Astrometry
Radial velocity (Rv)10.81±4.41 [2] km/s
Proper motion (μ)RA: −118.751(23) mas/yr [2]
Dec.: −19.648(26) mas/yr [2]
Parallax (π)29.3277±0.0273  mas [2]
Distance 111.2 ± 0.1  ly
(34.10 ± 0.03  pc)
Absolute magnitude  (MV)+9.0 [7]
Details
Mass 0.46±0.09 [8]   M
Radius 0.92±0.12 [8]   R
Luminosity 0.115±0.019 [8]   L
Surface gravity (log g)4.18±0.17 [8]   cgs
Temperature 3509±116 [8]   K
Rotation 5.012±0.007 [9] days
Rotational velocity (v sin i)63.2 [5]  km/s
Age 6.4±1.1 [10]   Myr
Other designations
TWA 7, CE Ant, TYC  7190-2111-1, ASAS  J104230-3340.3, GSC  07190-02111, 2MASS  J10423011-3340162, RX  J104230.3-334014, TIC  54147487, WISE  J104230.01-334016.4, Gaia  DR2 5444751795151480320
Database references
SIMBAD data

CE Antliae (also called TWA 7) is a young low-mass star in the constellation of Antlia. It is surrounded by a debris disk and has one directly imaged planet candidate. [11]

Contents

TWA 7 was discovered in 1999 with a spectral type of M1 and as a member of the TW Hydrae association. [4] The detection of molecular hydrogen is interpreted as a weak sign of accretion of gas near the star. [12] A giant x-ray flare was detected on 2010-09-07 with MAXI/GSC on the ISS. [6]

Planetary system

A light curve for CE Antliae, plotted from TESS data. The star's rotation period is marked in red. CEAntLightCurve.png
A light curve for CE Antliae, plotted from TESS data. The star's rotation period is marked in red.
TWA 7 disk with Gemini South telescope TWA 7 (noirlab2014g).jpg
TWA 7 disk with Gemini South telescope

The disk was first imaged in scattered light in 1998 with Hubble NICMOS, but it needed a re-processing in 2016 to reveal the disk. The observation showed a pole-on dust ring with a radius of about 35 astronomical units. [14] An outer ring and a spiral arm originating from the main ring was tentatively detected with VLT/SPHERE in 2018. The modelling also showed evidence of an inner ring. [15] An additional observation with Hubble STIS showed three rings, two spirals and a clump. [16] In 2000 dust was detected around TWA 7 due to excess of submillimeter radiation. [17] ALMA observations did however show that most emission come from a background galaxy. The disk was also detected with ALMA. [18] The disk has detected carbon monoxide (CO) gas according to ALMA observations, which is likely generated by exocomets. It was the first detection of CO gas in a debris disk around an M-dwarf. This kind of detection is more common around more massive stars. [19]

In 2025 JWST MIRI observations showed a point source that could be a young sub-Jovian planet with a mass of 0.3 MJ (about 100 M🜨) and a temperature of around 320  K (47  °C ). The candidate can explain the main ring of the debris disk. It also does not fit the spectrum of a background star. It could be consistent with an intermediate-redshift star-forming galaxy, but the probability of such a galaxy appearing that close to TWA 7 is estimated to be 0.34%. [11] If confirmed as a planet, it would be the least massive directly imaged exoplanet. [11] The candidate is located in an underdensity in ring 2 that was noticed before. Opposite to the planet candidate is another underdensity region, which could be created by orbital resonance. The mass of the candidate was previously predicted to be 2 Neptune masses (about 34 M🜨) before it was detected. [16] [11]

This candidate planet was independently detected by observations taken with the NIRCam instrument aboard JWST. The observations strongly support a planetary nature for this object, finding a background galaxy to be unlikely. The planet's mass could be similar to Neptune's. A second point-like source was also detected, but it needs follow-up observations to determine its nature. [20]

Another 2025 study aimed to detect close-in planets by searching periodicities in the radial velocity that would be caused by orbiting planets. Their modelling suggests a planet with a minimum mass of 12.5+3.0
−3.3
  M🜨
and a likely period of 15.21 days, with periods of 20.8 and 30.4 days being less likely. Assuming that the planet is coplanar to the protoplanetary disk, its inclination would be 13° and the true mass would be 0.17+0.04
−0.03
  MJ
. The detection of the planet is considered unclear, as the period may be correlated with the rotation period and the window function, although it is close to the reliable detection limit. Another periodicity of 6.6 days has been detected in some spectral lines, although not in other spectral lines and radial velocities. It might arise may be from star-planet interactions if the supposed planet is orbiting at 20.8 days, or less likely, from the planetary rotation period, although one possibility is that a tidally locked planet is orbiting at that period. The non-detection of the periodicity in the radial velocities imply an upper mass limit of 0.12 MJ. [9]

The CE Antliae planetary system [16] [11]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(years)
Eccentricity Inclination Radius
Ring 124.49±0.04 AU
b(candidate)0.3 MJ 52550
Ring 252.38±0.12 AU
Ring 3101+2
−3
AU

See also

Other M dwarfs with debris disks

References

  1. "Webb captures evidence of a lightweight planet around TWA 7". esawebb.org. 25 June 2025. Retrieved 26 June 2025.
  2. 1 2 3 4 5 6 Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi: 10.1051/0004-6361/202243940 . S2CID   244398875. Gaia DR3 record for this source at VizieR.
  3. Høg, E.; Fabricius, C.; Makarov, V. V.; Urban, S.; Corbin, T.; Wycoff, G.; Bastian, U.; Schwekendiek, P.; Wicenec, A. (2000). "The Tycho-2 catalogue of the 2.5 million brightest stars". Astronomy and Astrophysics. 355. Bibcode:2000A&A...355L..27H.
  4. 1 2 3 Webb, R. A.; Zuckerman, B.; Platais, I.; Patience, J.; White, R. J.; Schwartz, M. J.; McCarthy, C. (1999-02-01). "Discovery of Seven T Tauri Stars and a Brown Dwarf Candidatein the Nearby TW Hydrae Association". The Astrophysical Journal. 512 (1): L63 –L67. arXiv: astro-ph/9812189 . Bibcode:1999ApJ...512L..63W. doi:10.1086/311856. ISSN   0004-637X.
  5. 1 2 Yamashita, Mai; Itoh, Yoichi; Takagi, Yuhei (November 2024). "Chromospheric Mg I emission lines of pre-main-sequence stars". Astronomy & Astrophysics. 691: A304. arXiv: 2410.03087 . Bibcode:2024A&A...691A.304Y. doi:10.1051/0004-6361/202452025. ISSN   0004-6361.
  6. 1 2 Uzawa, Akiko; Tsuboi, Yohko; Morii, Mikio; Yamazaki, Kyohei; Kawai, Nobuyuki; Matsuoka, Masaru; Nakahira, Satoshi; Serino, Motoko; Matsumura, Takanori; Mihara, Tatehiro; Tomida, Hiroshi; Ueda, Yoshihiro; Sugizaki, Mutsumi; Ueno, Shiro; Daikyuji, Arata (2011-11-25). "A Large X-Ray Flare from a Single Weak-Lined T Tauri Star TWA-7 Detected with MAXI GSC". Publications of the Astronomical Society of Japan. 63 (sp3): S713 –S716. arXiv: 1108.5897 . Bibcode:2011PASJ...63S.713U. doi:10.1093/pasj/63.sp3.S713. ISSN   0004-6264.
  7. Bell, Cameron P. M.; Mamajek, Eric E.; Naylor, Tim (2015). "A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood". Monthly Notices of the Royal Astronomical Society. 454 (1): 593. arXiv: 1508.05955 . Bibcode:2015MNRAS.454..593B. doi: 10.1093/mnras/stv1981 .
  8. 1 2 3 4 5 Stassun, Keivan G.; Oelkers, Ryan J.; Paegert, Martin; Torres, Guillermo; Pepper, Joshua; Lee, Nathan De; Collins, Kevin; Latham, David W.; Muirhead, Philip S.; Chittidi, Jay; Rojas-Ayala, Bárbara; Fleming, Scott W.; Rose, Mark E.; Tenenbaum, Peter; Ting, Eric B. (2019-09-09). "The Revised TESS Input Catalog and Candidate Target List". The Astronomical Journal. 158 (4): 138. arXiv: 1905.10694 . Bibcode:2019AJ....158..138S. doi: 10.3847/1538-3881/ab3467 . ISSN   0004-6256.
  9. 1 2 Donati, J.-F.; Cristofari, P. I.; Moutou, C.; Lavail, A.; Bouvier, J.; Alencar, S. H. P.; Petit, P.; Carmona, A.; Delfosse, X. (2025-11-20). "Searching for close-in planets around TWA 7 with SPIRou". Astronomy and Astrophysics . arXiv: 2511.16609 .
  10. Binks, A. S.; Jeffries, R. D.; Wright, N. J. (2020). "A kinematically hot population of young stars in the solar neighbourhood". Monthly Notices of the Royal Astronomical Society. 494 (2): 2429. arXiv: 2003.13369 . Bibcode:2020MNRAS.494.2429B. doi: 10.1093/mnras/staa909 .
  11. 1 2 3 4 5 Lagrange, A.-M.; Wilkinson, C.; Mâlin, M.; Boccaletti, A.; Perrot, C.; Matrà, L.; Combes, F.; Rouan, D.; Beust, H. (25 June 2025). "Evidence for a sub-Jovian planet in the young TWA 7 disk". Nature . 642 (8069): 905–908. arXiv: 2502.15081 . Bibcode:2025Natur.642..905L. doi: 10.1038/s41586-025-09150-4 . PMC   12221965 . PMID   40562924.
  12. Flagg, Laura; Johns-Krull, Christopher M.; France, Kevin; Herczeg, Gregory; Najita, Joan; Carpenter, John M.; Kenyon, Scott J. (2021-11-01). "Detection of H2 in the TWA 7 System: A Probable Circumstellar Origin". The Astrophysical Journal. 921 (1): 86. arXiv: 2108.08327 . Bibcode:2021ApJ...921...86F. doi: 10.3847/1538-4357/ac1d4c . ISSN   0004-637X.
  13. "MAST: Barbara A. Mikulski Archive for Space Telescopes". Space Telescope Science Institute. Retrieved 24 February 2025.
  14. Choquet, Élodie; Perrin, Marshall D.; Chen, Christine H.; Soummer, Rémi; Pueyo, Laurent; Hagan, James B.; Gofas-Salas, Elena; Rajan, Abhijith; Golimowski, David A.; Hines, Dean C.; Schneider, Glenn; Mazoyer, Johan; Augereau, Jean-Charles; Debes, John; Stark, Christopher C.; Wolff, Schuyler; n'Diaye, Mamadou; Hsiao, Kevin (2016). "First Images of Debris Disks around TWA 7, TWA 25, HD 35650, and HD 377". The Astrophysical Journal. 817 (1): L2. arXiv: 1512.02220 . Bibcode:2016ApJ...817L...2C. doi: 10.3847/2041-8205/817/1/L2 .`
  15. Olofsson, J.; van Holstein, R. G.; Boccaletti, A.; Janson, M.; Thébault, P.; Gratton, R.; Lazzoni, C.; Kral, Q.; Bayo, A.; Canovas, H.; Caceres, C.; Ginski, C.; Pinte, C.; Asensio-Torres, R.; Chauvin, G. (September 2018). "Resolving faint structures in the debris disk around TWA 7". Astronomy & Astrophysics. 617: A109. arXiv: 1804.01929 . Bibcode:2018A&A...617A.109O. doi:10.1051/0004-6361/201832583. ISSN   0004-6361.
  16. 1 2 3 Ren 任, Bin 彬; Choquet, Élodie; Perrin, Marshall D.; Mawet, Dimitri; Chen, Christine H.; Milli, Julien; Debes, John H.; Rebollido, Isabel; Stark, Christopher C.; Hagan, J. Brendan; Hines, Dean C.; Millar-Blanchaer, Maxwell A.; Pueyo, Laurent; Roberge, Aki; Schneider, Glenn (2021-06-01). "A Layered Debris Disk around M Star TWA 7 in Scattered Light". The Astrophysical Journal. 914 (2): 95. arXiv: 2105.09949 . Bibcode:2021ApJ...914...95R. doi: 10.3847/1538-4357/ac03b9 . ISSN   0004-637X.
  17. Webb, R. A.; Zuckerman, B.; Greaves, J. S.; Holland, W. S. (December 2000). "Large, cold dust grains orbiting stars in the TW Hydrae Association". American Astronomical Society, 197th AAS Meeting, Id.08.27. 32: 1410. Bibcode:2000AAS...197.0827W.
  18. Bayo, A; Olofsson, J; Matrà, L; Beamín, J C; Gallardo, J; de Gregorio-Monsalvo, I; Booth, M; Zamora, C; Iglesias, D; Henning, Th; Schreiber, M R; Cáceres, C (July 2019). "Sub-millimetre non-contaminated detection of the disc around TWA 7 by ALMA". Monthly Notices of the Royal Astronomical Society. 486 (4): 5552–5557. arXiv: 1806.09252 . Bibcode:2019MNRAS.486.5552B. doi: 10.1093/mnras/stz1133 . ISSN   0035-8711.
  19. Matrà, L.; Öberg, K. I.; Wilner, D. J.; Olofsson, J.; Bayo, A. (2019-02-14). "On the Ubiquity and Stellar Luminosity Dependence of Exocometary CO Gas: Detection around M Dwarf TWA 7". The Astronomical Journal. 157 (3): 117. arXiv: 1901.05004 . Bibcode:2019AJ....157..117M. doi: 10.3847/1538-3881/aaff5b . ISSN   0004-6256.
  20. Crotts, Katie A.; et al. (2025). "Follow-Up Exploration of the TWA 7 Planet-Disk System with JWST NIRCam". The Astrophysical Journal Letters . 987 (2): L41. arXiv: 2506.19932 . Bibcode:2025ApJ...987L..41C. doi: 10.3847/2041-8213/ade798 .