Calabash Nebula

Last updated
Calabash Nebula
Reflection nebula
Protoplanetary nebula
The Calabash clash.jpg
The Calabash Nebula, as taken by Hubble Space Telescope
Observation data: J2000 epoch
Right ascension 07h 42m 16.83s [1]
Declination −14° 42 52.1 [1]
Distance 4,200 [2]   ly    (1,300  pc)
Apparent magnitude (V)9.47 [1]
Apparent dimensions (V)1[ citation needed ]
Constellation Puppis
Physical characteristics
Radius 0.7 [a]  ly
Absolute magnitude (V)-1.4 [b]
DesignationsOH 231.84 +4.22, [1]
Rotten Egg Nebula [1]
See also: Lists of nebulae
QX Puppis
QXPupLightCurve.png
A near-infrared (I band) light curve for QX Puppis, plotted from AAVSO data [3]
Characteristics
Evolutionary stage OH/IR star [1]
Spectral type M10III + A [1]
Variable type Mira [1]

The Calabash Nebula, also known as the Rotten Egg Nebula or by its technical name OH 231.84 +4.22, is a protoplanetary nebula (PPN) 1.4 light years (13 Pm) long and located some 5,000 light years (47 Em) from Earth in the constellation Puppis. The name "Calabash Nebula" was first proposed in 1989 in an early paper on its expected nebular dynamics, based on the nebula's appearance. [4] The Calabash is almost certainly a member of the open cluster Messier 46, as it has the same distance, radial velocity, and proper motion. [5] The central star is QX Puppis, a binary composed of a very cool Mira variable and an A-type main-sequence star.

Contents

Description

Violent gas collisions that produced supersonic shock fronts in a dying star are seen in a detailed image from NASA's Hubble Space Telescope.

The object is sometimes called the Rotten Egg Nebula as it contains a relatively large amount of sulphur. The densest parts of the nebula are composed of material ejected recently by the central star and accelerated in opposite directions. This material, shown as yellow in the image, is zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Most of the star's original mass is now contained in these bipolar gas structures.

A team of Spanish and US astronomers used NASA's Hubble Space Telescope to study how the gas stream rams into the surrounding material, shown in blue. They believe that such interactions dominate the formation process in planetary nebulae. Due to the high speed of the gas, shock-fronts are formed on impact and heat the surrounding gases. Although computer calculations had predicted the existence and structure of such shocks for some time, previous observations had not been able to prove the theory.

This new Hubble image used filters that only let through light from ionized hydrogen and nitrogen atoms. Astronomers were able to distinguish the warmest parts of the gas heated by the violent shocks and found that they form a complex double-bubble shape. The bright yellow-orange colors in the picture show how dense, high-speed gas is flowing from the star, like supersonic speeding bullets ripping through a medium in opposite directions. The central star itself is hidden in the dusty band at the center.

Much of the gas flow observed today seems to stem from a sudden acceleration that took place about 800 years ago. Astronomers believe that 1,000 years from now, the Calabash Nebula will become a fully developed planetary nebula.

Ground-based imagery

NGC 2438 (upper left) and the Calabash Nebula (lower right) taken from the Mount Lemmon SkyCenter using the 0.8 m Schulman Telescope. N2438s.jpg
NGC 2438 (upper left) and the Calabash Nebula (lower right) taken from the Mount Lemmon SkyCenter using the 0.8 m Schulman Telescope.

In wide field images, the Calabash nebula is visible near the bright planetary nebula NGC 2438 in deep photographs. Although the Calabash Nebula is at the same distance as M46, NGC 2438 is a larger object in the foreground.

Notes

  1. ^ Radius = distance × sin(angular size / 2) = 5 kly * sin(1 / 2) = 0.7 ly
  2. ^ 9.47 apparent magnitude - 5 * (log10(1,500 pc distance) - 1) = -1.4 absolute magnitude

Related Research Articles

<span class="mw-page-title-main">Helix Nebula</span> Planetary nebula in the constellation Aquarius

The Helix Nebula is a planetary nebula (PN) located in the constellation Aquarius. Discovered by Karl Ludwig Harding, most likely before 1824, this object is one of the closest of all the bright planetary nebulae to Earth. The distance, measured by the Gaia mission, is 655±13 light-years. It is similar in appearance to the Cat's Eye Nebula and the Ring Nebula, whose size, age, and physical characteristics are similar to the Dumbbell Nebula, varying only in its relative proximity and the appearance from the equatorial viewing angle. The Helix Nebula has sometimes been referred to as the "Eye of God" in pop culture, as well as the "Eye of Sauron".

<span class="mw-page-title-main">Red Spider Nebula</span> Planetary nebula in the Milky Way

The Red Spider Nebula is a planetary nebula located near the heart of the Milky Way, in the northwest of the constellation Sagittarius. The nebula has a prominent two-lobed shape, possibly due to a binary companion or magnetic fields and has an S-shaped symmetry of the lobes – the lobes opposite each other appear similar. This is believed to be due to the presence of a companion to the central white dwarf. However, the gas walls of the two lobed structures are not at all smooth, but rather are rippled in a complex way.

<span class="mw-page-title-main">Cat's Eye Nebula</span> Planetary nebula in the constellation Draco

The Cat's Eye Nebula is a planetary nebula in the northern constellation of Draco, discovered by William Herschel on February 15, 1786. It was the first planetary nebula whose spectrum was investigated by the English amateur astronomer William Huggins, demonstrating that planetary nebulae were gaseous and not stellar in nature. Structurally, the object has had high-resolution images by the Hubble Space Telescope revealing knots, jets, bubbles and complex arcs, being illuminated by the central hot planetary nebula nucleus (PNN). It is a well-studied object that has been observed from radio to X-ray wavelengths.

<span class="mw-page-title-main">Eagle Nebula</span> Open cluster in the constellation Serpens

The Eagle Nebula is a young open cluster of stars in the constellation Serpens, discovered by Jean-Philippe de Cheseaux in 1745–46. Both the "Eagle" and the "Star Queen" refer to visual impressions of the dark silhouette near the center of the nebula, an area made famous as the "Pillars of Creation" imaged by the Hubble Space Telescope. The nebula contains several active star-forming gas and dust regions, including the aforementioned Pillars of Creation. The Eagle Nebula lies in the Sagittarius Arm of the Milky Way.

<span class="mw-page-title-main">Eskimo Nebula</span> Planetary nebula in the constellation Gemini

The Eskimo Nebula, also known as the Clown-faced Nebula, Lion Nebula, or Caldwell 39, is a bipolar double-shell planetary nebula (PN). It was discovered by astronomer William Herschel in 1787. The formation resembles a person's head surrounded by a parka hood. It is surrounded by gas that composed the outer layers of a Sun-like star. The visible inner filaments are ejected by a strong wind of particles from the central star. The outer disk contains unusual, light-year-long filaments.

<span class="mw-page-title-main">Saturn Nebula</span> Planetary nebula in the constellation Aquarius

The Saturn Nebula is a planetary nebula in the constellation Aquarius. It appears as a greenish-yellowish hue in a small amateur telescope. It was discovered by William Herschel on September 7, 1782, using a telescope of his own design in the garden at his home in Datchet, England, and was one of his earliest discoveries in his sky survey. The nebula was originally a low-mass star that ejected its layers into space, forming the nebula. The central star is now a bright white dwarf star of apparent magnitude 11.5. The Saturn Nebula gets its name from its superficial resemblance to the planet Saturn with its rings nearly edge-on to the observer. It was so named by Lord Rosse in the 1840s, when telescopes had improved to the point that its Saturn-like shape could be discerned. William Henry Smyth said that the Saturn Nebula was one of Struve's nine "Rare Celestial Objects".

<span class="mw-page-title-main">Messier 46</span> Open cluster in the constellation Puppis

Messier 46 or M46, also known as NGC 2437, is an open cluster of stars in the slightly southern constellation of Puppis. It was discovered by Charles Messier in 1771. Dreyer described it as "very bright, very rich, very large." It is about 5,000 light-years away. There are an estimated 500 stars in the cluster with a combined mass of 453 M, and it is thought to be a mid-range estimate of 251.2 million years old.

<span class="mw-page-title-main">NGC 5189</span> Planetary nebula in the constellation Musca

NGC 5189 is a planetary nebula in the constellation Musca. It was discovered by James Dunlop on 1 July 1826, who catalogued it as Δ252. For many years, well into the 1960s, it was thought to be a bright emission nebula. It was Karl Gordon Henize in 1967 who first described NGC 5189 as quasi-planetary based on its spectral emissions.

<span class="mw-page-title-main">NGC 2438</span> Planetary nebula in the constellation Puppis

NGC 2438 is a planetary nebula in the southern constellation of Puppis. Parallax measurements by Gaia put the central star at a distance of roughly 1,370 light years. It was discovered by William Herschel on March 19, 1786. NGC 2438 appears to lie within the cluster M46, but it is most likely unrelated since it does not share the cluster's radial velocity. The case is yet another example of a superposed pair, joining the famed case of NGC 2818.

<span class="mw-page-title-main">NGC 7027</span> Planetary nebula in the constellation Cygnus

NGC 7027, also known as the Jewel Bug Nebula, is a very young and dense planetary nebula located around 3,000 light-years from Earth in the constellation Cygnus. Discovered in 1878 by Édouard Stephan using the 800 mm (31 in) reflector at Marseille Observatory, it is one of the smallest planetary nebulae and by far the most extensively studied.

<span class="mw-page-title-main">NGC 3132</span> Planetary nebula in the constellation Vela

NGC 3132 is a bright and extensively studied planetary nebula in the constellation Vela. Its distance from Earth is estimated at about 613 pc. or 2,000 light-years.

<span class="mw-page-title-main">Sh2-279</span> Emission nebula in the constellation Orion

Sh2-279 is an HII region and bright nebulae that includes a reflection nebula located in the constellation Orion. It is the northernmost part of the asterism known as Orion's Sword, lying 0.6° north of the Orion Nebula. The reflection nebula embedded in Sh2-279 is popularly known as the Running Man Nebula.

<span class="mw-page-title-main">NGC 7380</span> Open cluster in the constellation Cepheus

NGC 7380 is a young open cluster of stars in the northern circumpolar constellation of Cepheus, discovered by Caroline Herschel in 1787. The surrounding emission nebulosity is known colloquially as the Wizard Nebula, which spans an angle of 25′. German-born astronomer William Herschel included his sister's discovery in his catalog, and labelled it H VIII.77. The nebula is known as S 142 in the 1959 Sharpless catalog (Sh2-142). It is extremely difficult to observe visually, usually requiring very dark skies and an O-III filter. The NGC 7380 complex is located at a distance of approximately 8.5 kilolight-years from the Sun, in the Perseus Arm of the Milky Way.

<span class="mw-page-title-main">NGC 6302</span> Bipolar planetary nebula in the constellation Scorpius

NGC 6302 is a bipolar planetary nebula in the constellation Scorpius. The structure in the nebula is among the most complex ever observed in planetary nebulae. The spectrum of NGC 6302 shows that its central star is one of the hottest stars known, with a surface temperature in excess of 250,000 degrees Celsius, implying that the star from which it formed must have been very large.

<span class="mw-page-title-main">NGC 6751</span> Planetary nebula in the constellation Aquila

NGC 6751, also known as the Glowing Eye Nebula, is a planetary nebula in the constellation Aquila. It is estimated to be about 6,500 light-years away.

<span class="mw-page-title-main">Veil Nebula</span> Cloud of heated and ionized gas and dust in the constellation Cygnus

The Veil Nebula is a cloud of heated and ionized gas and dust in the constellation Cygnus.

<span class="mw-page-title-main">Bipolar nebula</span> Type of nebula that has two lobes extending from a central star

A bipolar nebula is a type of nebula characterized by two lobes either side of a central star. About 10-20% of planetary nebulae are bipolar.

<span class="mw-page-title-main">NGC 602</span> Open cluster in the constrellation Hydrus

NGC 602 is a young, bright open cluster of stars located in the Small Magellanic Cloud (SMC), a satellite galaxy to the Milky Way. It is embedded in a nebula known as N90.

<span class="mw-page-title-main">NGC 2261</span> Reflection nebula in the constellation Monoceros

NGC 2261 is a variable nebula located in the constellation Monoceros. The nebula is illuminated by the star R Monocerotis, which is not directly visible itself.

<span class="mw-page-title-main">NGC 2467</span> Open cluster in the constellation Puppis

NGC 2467, nicknamed the "Skull and Crossbones Nebula", is a star-forming region whose appearance has occasionally also been likened to that of a colorful mandrill. It includes areas where large clouds of hydrogen gas incubate new stars. This region was one of the areas featured in the book Hubble's Universe: Greatest Discoveries and Latest Images by Terence Dickinson.

References

  1. 1 2 3 4 5 6 7 8 (SIMBAD 2007)
  2. (Kastner et al. 1998)
  3. "Download Data". aavso.org. AAVSO. Retrieved 1 October 2021.
  4. ( Icke & Preston 1989 )
  5. Vickers S.B.; Frew D.J.; Parker Q.A.; Bojicic I.S. (2015). "New light on Galactic post-asymptotic giant branch stars - I. First distance catalogue". Monthly Notices of the Royal Astronomical Society . 447 (2): 1673–1691. arXiv: 1403.7230 . Bibcode:2015MNRAS.447.1673V. doi:10.1093/mnras/stu2383.

Sources