Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Puppis |
Right ascension | 08h 11m 46.0635s [1] |
Declination | −35° 21′ 04.9863″ [1] |
Apparent magnitude (V) | 0.7 Max. 18 Min. [2] |
Characteristics | |
Variable type | Nova [2] |
Astrometry | |
Radial velocity (Rv) | +37 [3] km/s |
Proper motion (μ) | RA: −1.761±0.034 [1] mas/yr Dec.: 2.432±0.037 [1] mas/yr |
Parallax (π) | 1.2298 ± 0.0211 mas [1] |
Distance | 814+14 −15 [2] pc |
Other designations | |
Database references | |
SIMBAD | data |
CP Puppis (or Nova Puppis 1942) was a bright nova occurring in the constellation Puppis in 1942. The nova was discovered on 9 November 1942 by Bernhard Dawson at La Plata, Argentina, when it had an apparent visual magnitude of about 2. [6] [7] It was independently discovered at 18:00 10 November 1942 (UT) by a 19-year-old Japanese schoolgirl, Kuniko Sofue, who looked at the sky after patching her socks and noticed the nova. [5] For this discovery, asteroid 7189 Kuniko was named in her honor. [8]
From a 17th magnitude star, it reached an apparent visual magnitude of –0.2 then began a rapid decline. It had dropped by three magnitudes in an interval of 6.5 days, one of the sharpest declines ever noted for a nova. About 14 years later, the shell ejected by the nova event was detected, which allowed the distance to be computed. In 2000, this distance was revised to 3,720 light-years (1,140 parsecs ) after correcting for probable errors. [9] The Gaia spacecraft later measured the parallax of the star leading to an accurate distance of 815+15
−14 parsecs. [1] [2]
The nova outburst can be explained by a white dwarf that is accreting matter from a companion; most likely a low-mass main sequence star. This close binary system has an orbital period of 1.47 hours, which is one of the shortest periods of the known classical nova. Unusually, the white dwarf may have a magnetic field. Other properties of the system remain uncertain, although observations of X-ray emission from the system suggest that the white dwarf has a mass of more than 1.1 times the mass of the Sun. [9]
T Pyxidis is a recurrent nova and nova remnant in the constellation Pyxis. It is a binary star system and its distance is estimated at 4,783 parsecs from Earth. It contains a Sun-like star and a white dwarf. Because of their close proximity and the larger mass of the white dwarf, the latter draws matter from the larger, less massive star. The influx of matter on the white dwarf's surface causes periodic thermonuclear explosions to occur.
GK Persei was a bright nova first observed on Earth in 1901. It was discovered by Thomas David Anderson, an Edinburgh clergyman, at 02:40 UT on 22 February 1901 when it was at magnitude 2.7. It reached a maximum magnitude of 0.2, the brightest nova of modern times until Nova Aquilae 1918. After fading into obscurity at about magnitude 12 to 13 during the early 20th century, GK Persei began displaying infrequent outbursts of 2 to 3 magnitudes. Since about 1980, these outbursts have become quite regular, typically lasting about two months and occurring about every three years. Thus, GK Persei seems to have changed from a classical nova like Nova Aquilae 1918 to something resembling a typical dwarf nova-type cataclysmic variable star.
V1500 Cygni or Nova Cygni 1975 was a bright nova occurring in 1975 in the constellation Cygnus. It had the second highest intrinsic brightness of any nova of the 20th century, exceeded only by CP Puppis in 1942.
V382 Velorum, also known as Nova Velorum 1999, was a bright nova which occurred in 1999 in the southern constellation Vela. V382 Velorum reached a brightness of 2.6 magnitude, making it easily visible to the naked eye. It was discovered by Peter Williams of Heathcote, New South Wales, Australia at 09:30 UT on 22 May 1999. Later that same day it was discovered independently at 10:49 UT by Alan C. Gilmore at Mount John University Observatory in New Zealand.
CP Lacertae was a nova, which lit up on June 18, 1936 in the constellation Lacerta. It was discovered independently by several observers including Leslie Peltier in the US, E. Loreta in Italy, and Kazuaki Gomi, a Japanese barber who discovered the nova during the 19 June 1936 total solar eclipse.
HR Lyrae or Nova Lyrae 1919 was a nova which occurred in the constellation Lyra in 1919. Its discovery was announced by Johanna C. Mackie on 6 December 1919. She discovered it while examining photographic plates taken at the Harvard College Observatory. The bulletin announcing the discovery states "Between December 4 and 6 it rose rapidly from the sixteenth magnitude or fainter, to a maximum of about 6.5". It was the first nova ever reported in Lyra, and Mackie was awarded the AAVSO gold medal for her discovery. Its peak magnitude of 6.5 implies that it might have been visible to the naked eye, under ideal conditions.
DK Lacertae was a nova, which lit up in the constellation Lacerta in 1950. The nova was discovered by Charles Bertaud of the Paris Observatory on a photographic plate taken on 23 January 1950. At the time of its discovery, it had an apparent magnitude of 6.1. DK Lacertae reached peak magnitude 5.0, making it easily visible to the naked eye.
V1494 Aquilae or Nova Aquilae 1999 b was a nova which occurred during 1999 in the constellation Aquila and reached a brightness of magnitude 3.9 on 2 December 1999. making it easily visible to the naked eye. The nova was discovered with 14×100 binoculars by Alfredo Pereira of Cabo da Roca, Portugal at 18:50 UT on 1 December 1999, when it had a visual magnitude of 6.0.
QU Vulpeculae, also known as Nova Vulpeculae 1984 Number 2, was the second nova which occurred in 1984 in the constellation Vulpecula. It was discovered by Peter Collins, an amateur astronomer from Cardiff, California at 22:08 UT on 22 December 1984. At the time of its discovery, the nova's apparent magnitude was 6.8. By the next night, Collins reported its brightness had increased to magnitude 5.6, making it visible to the naked eye.
39 Aquarii is a star in the zodiac constellation of Aquarius. 39 Aquarii is its Flamsteed designation. It is a faint naked eye star with an apparent visual magnitude of 6.03. Based upon an annual parallax shift of 23.78 measured with a 3% margin of error, this star is at a distance of around 137 light-years from Earth. It is a double star with a magnitude 9.3 companion at an angular separation of 0.6 arcseconds along a position angle of 257°.
HD 50281 is a star in the equatorial constellation of Monoceros. It is orange in hue with an apparent visual magnitude of 6.58, which lies at or below the typical limit of visibility to the naked eye. The star is located at a distance of 28.5 light years from the Sun based on parallax, but is drifting closer with a radial velocity of −7.2 km/s.
HD 164427 is a star with a likely red dwarf companion in the southern constellation of Pavo. It has an apparent visual magnitude of 6.88, placing it just below the nominal limit for visibility with the typical naked eye. The annual parallax shift of 23.5 mas yields a distance estimate of 139 light-years. It is moving further from the Earth with a heliocentric radial velocity of +3.4 km/s.
HD 44594 is a star in the southern constellation Puppis. It has an apparent visual magnitude of 6.64, so it can be seen with the naked eye from the southern hemisphere under good viewing conditions. Based upon parallax measurements, it is located at a distance of 85 light-years from the Earth, giving it an absolute magnitude of 4.56.
KT Eridani was a bright nova in the constellation Eridanus that produced an outburst in 2009. It was the first classical nova ever detected in that constellation. The nova was discovered at 12:52 UT on 25 November 2009 by K. Itagaki at Yamagata, Japan with a 21 cm patrol telescope. At the time of its discovery, it was a magnitude 8.1 object. The discovery occurred after the nova's peak brightness, but the All Sky Automated Survey system had detected the nova on three earlier occasions, allowing a more complete light curve to be produced. The peak magnitude, 5.4, was seen at 15:10 UT on 14 November 2009.
Q Cygni, is a star located in the constellation Cygnus. It is also known as Nova Cygni 1876, and has the designation NGC 7114, and HR 8296. Nova Cygni is located in the northwestern portion of Cygnus along the border with Lacerta.
OS Andromedae, known also as Nova Andromedae 1986, is a classical nova that appeared in the constellation Andromeda during 1986. It was discovered at 10:34 UT on 5 December 1986 by Mitsuri Suzuki, a 28-year-old school teacher living in Ena, Japan. He photographed the portion of the Milky Way that passes through northern Andromeda with a 200-mm telephoto lens, and found the nova when its apparent magnitude was 8.0. Two days later it reached a peak apparent visual magnitude of 6.3.
QZ Aurigae, also known as Nova Aurigae 1964, was a nova which occurred in the constellation Auriga during 1964. It was discovered by Nicholas Sanduleak on an objective prism photographic plate taken at the Warner and Swasey Observatory on 4 November 1964. Examination of pre-discovery plates from Sonneberg Observatory showed that the eruption occurred in early February 1964, and it had a photographic magnitude of 6.0 on 14 February 1964. Its brightness declined in images taken after the 14th, suggesting that its peak brightness was above 6.0. It was probably visible to the naked eye for a short time.
GI Monocerotis, also known as Nova Monocerotis 1918, was a nova that erupted in the constellation Monoceros during 1918. It was discovered by Max Wolf on a photographic plate taken at the Heidelberg Observatory on 4 February 1918. At the time of its discovery, it had a photographic magnitude of 8.5, and had already passed its peak brightness. A search of plates taken at the Harvard College Observatory showed that it had a photographic magnitude of 5.4 on 1 January 1918, so it would have been visible to the naked eye around that time. By March 1918 it had dropped to ninth or tenth magnitude. By November 1920 it was a little fainter than 15th magnitude.
WD 0810-353 is a white dwarf currently located 36 light-years from the Solar System. This stellar remnant may approach the Solar System 29,000 years from now at a distance of around 0.15 parsecs, 0.49 light-years or 31,000 AU from the Sun, crossing well within the proposed boundaries of the Oort cloud. Such close proximity will almost certainly make its flyby the closest in the future, until the flyby of Gliese 710 occurs around 1.14 million years after the dwarf's flyby.