Capronia mansonii

Last updated

Capronia mansonii
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Eurotiomycetes
Order: Chaetothyriales
Family: Herpotrichiellaceae
Genus: Capronia
Species:
C. mansonii
Binomial name
Capronia mansonii
(Schol-Schwarz) E.Müll., Petrini, P.J.Fisher, Samuels & Rossman (1987)
Synonyms [1]
  • Dictyotrichieila mansoniiSchol-Schwarz (1968)
  • Berlesiella mansonii(Schol-Schwarz) Lar.N.Vassiljeva (1998)

Capronia mansonii is a mesophilic black yeast that is a part of the Herpotrichiellaceae. [2] The species is uncommon in nature but is saprotrophic in nature and been discovered on decaying plant matter, particularly wood. [2] This fungus is naturally found in the Netherlands and has successfully been cultured in lab. [3] It is a teleomorph of the ascomycota division and possesses brown spores. [4]

Contents

History and taxonomy

Capronia mansonii is a type of black yeast that was first discovered from an isolated strain in 1968. [2] [3] The fungus was originally described from a strain in vitro found in Norway by Marie Beatrice Schol-Schwarz on an aspen tree, and it has not yet been described in situ. [3] [5] This fungus was the first species in Herpotrichiellaceae discovered to create ascomata in an isolated culture. [4] It is one of the only five species out of thirty Capronia species that has successfully produced ascomata in vitro. [5] The basionym for this species is Dictyotrichiella mansonii. [6] Its anamorph is thought to be Exophiala mansonii but uncertainty and discourse remains. [3] [7] The original anamorph was first thought to be Rhinocladiella atrovirens and then Exophiala castellanii [8] [7] An analysis of rRNA gene sequences concluded that C. mansonii is the same biological species as E. castellanii. [7] Capronia mansonii is often misidentified as its sister species Capronia munkii but can be differentiated by its larger and thicker cell walls and more frequent ascospores that transversely septate. [3] It is also differentiated from its anamorph because it lacks conidia, slimy colonies, and aerial hyphae. [9]

Growth and morphology

This fungus is a teleomorph or sexual form that is formed in vitro. This species has yet to be described in situ. [5] The fungus is thought to be closely related to Exophiala dermatitidis , and is often hypothesized in literature to be the teleomorph of E. dermatitidis. [3] The fungus is a part of the ascomycota phylum, also commonly defined as sac fungi. This phylum is often defined by its possession of asci, a microscope sexual structure that produces non-motile spores called ascospores. The asci of C. mansonii produce 8 ascospores upon germination. [3] These ascospores begin with a glassy transparent appearance and then progress to a more grey-yellow, olive, and finally brown colour. [3] [6] These ascospores have 4–5 transverse thick-walled septa and 1 incomplete longitudinal septum. [6] The spores have been described in literature as not tight at the septa. [3] Juvenile asci have thicker, longer, and more lightly coloured ascus walls whereas as fully matured asci form thinner dark brown walls that are filled with ascospores. [3] The ascomatal wall itself can range from a brown-yellow to a light brown colour which is commonly seen in other black yeasts. [3]

Physiology and reproduction

This mesophilic fungus has been successfully cultured by Untereiner at room temperature ranging from 20–25 °C. [5] [10] C. mansonii has also been observed in a yeast budding form. [2] This fungus has a homothallic breeding system indicating that it does not need a partner to sexually reproduce. [5] The ascospores of this fungus have been described to germinate within 12 hours on Oatmeal Agar. [5] [4] They appear slimy and resemble yeast within 48 hours, reaching full maturity at 16 weeks. [5] The ascomata that have been grown in lab have been shown to fully mature and develop septae but are unable to produce asci and ascospores. [5] Artificial daylight is thought to be the limiting factor that prevents the production of asci. [10] Further replications of the above experiments revealed that the structure formed may actually be a pseudothecium, an ascocarp that resembles a ascocarp but whose asci do not organize into a hymenium. [10] The pseudothecia grew in abundance and also failed to produce ascospores. [10]

Habitat and ecology

Members of the Capronia family are described as saprotrophic meaning they get their nutrients from decaying matter. [10] Strains of this fungus have been found on various plant hosts, particularly on their leaves. [5] They are regularly found on other decaying ascomycota and basidiomycota in the Netherlands, particularly on the wood of Populus tremula. [6] [11] The holotype was discovered on the stems of a Lupinus polyphyllus by Schol-Schwarz in 1968. [6] [11] This fungus has occasionally been found on fresh sausages consisting of pork, beef, or mixed meats. [2] They remain unstable on meat and are unable to persist for more than three days in the presence of other lactic acid bacteria. [2]

Related Research Articles

<i>Cordyceps</i> Genus of fungi

Cordyceps is a genus of ascomycete fungi that includes about 600 worldwide species. Diverse variants of cordyceps have had more than 1,500 years of use in Chinese medicine. Most Cordyceps species are endoparasitoids, parasitic mainly on insects and other arthropods ; a few are parasitic on other fungi.

<span class="mw-page-title-main">Saccharomycotina</span> Subdivision of fungi

Saccharomycotina is a subdivision (subphylum) of the division (phylum) Ascomycota in the kingdom Fungi. It comprises most of the ascomycete yeasts. The members of Saccharomycotina reproduce by budding and they do not produce ascocarps.

<i>Cochliobolus carbonum</i> Species of fungus

Cochliobolus carbonum is one of more than 40 species of filamentous ascomycetes belonging to the genus Cochliobolus. This pathogen has a worldwide distribution, with reports from Australia, Brazil, Cambodia, Canada, China, Congo, Denmark, Egypt, India, Kenya, New Zealand, Nigeria, Solomon Islands, and the United States. Cochliobolus carbonum is one of the most aggressive members of this genus infecting sorghum, corn and apple. As one of the most devastating pathogens of sweet corn, C. carbonum causes Northern leaf spot and ear rot disease while the asexual stage causes Helminthosporium corn leaf spot. Cochliobolus carbonum is pathogenic to all organs of the corn plant including root, stalk, ear, kernel, and sheath. However, symptoms of infection show distinct manifestations in different plant parts: whole plant - seedling blight affects the whole plant, leaf discoloration and mycelial growth, black fungal spores and lesions appear on inflorescences and glumes, and grain covered with very dark brown to black mycelium which gives a characteristic charcoal appearance due to the production of conidia.

<i>Exophiala</i> Genus of fungi

Exophiala is a genus of anamorphic fungi in the family Herpotrichiellaceae. The widespread genus contains 28 species. The genus was formally described by J. W. Carmichael in 1966.

Exophiala jeanselmei is a saprotrophic fungus in the family Herpotrichiellaceae. Four varieties have been discovered: Exophiala jeanselmei var. heteromorpha, E. jeanselmei var. lecanii-corni, E. jeanselmei var. jeanselmei, and E. jeanselmei var. castellanii. Other species in the genus Exophiala such as E. dermatitidis and E. spinifera have been reported to have similar annellidic conidiogenesis and may therefore be difficult to differentiate.

<i>Blastomyces dermatitidis</i> Species of fungus

Blastomyces dermatitidis is a dimorphic fungus that causes blastomycosis, an invasive and often serious fungal infection found occasionally in humans and other animals. It lives in soil and wet, decaying wood, often in an area close to a waterway such as a lake, river or stream. Indoor growth may also occur, for example, in accumulated debris in damp sheds or shacks. The fungus is endemic to parts of eastern North America, particularly boreal northern Ontario, southeastern Manitoba, Quebec south of the St. Lawrence River, parts of the U.S. Appalachian mountains and interconnected eastern mountain chains, the west bank of Lake Michigan, the state of Wisconsin, and the entire Mississippi Valley including the valleys of some major tributaries such as the Ohio River. In addition, it occurs rarely in Africa both north and south of the Sahara Desert, as well as in the Arabian Peninsula and the Indian subcontinent. Though it has never been directly observed growing in nature, it is thought to grow there as a cottony white mold, similar to the growth seen in artificial culture at 25 °C (77 °F). In an infected human or animal, however, it converts in growth form and becomes a large-celled budding yeast. Blastomycosis is generally readily treatable with systemic antifungal drugs once it is correctly diagnosed; however, delayed diagnosis is very common except in highly endemic areas.

<span class="mw-page-title-main">Orbiliaceae</span> Family of fungi

The Orbiliaceae are a family of saprobic sac fungi in the order Orbiliales. The family, first described by John Axel Nannfeldt in 1932, contains 288 species in 12 genera. Members of this family have a widespread distribution, but are more prevalent in temperate regions. Some species in the Orbiliaceae are carnivorous fungi, and have evolved a number of specialized mechanisms to trap nematodes.

<i>Chorioactis</i> Genus of fungi that contains the single species Chorioactis geaster

Chorioactis is a genus of fungi that contains the single species Chorioactis geaster. The mushroom is commonly known as the devil's cigar or the Texas star in the United States, while in Japan it is called kirinomitake (キリノミタケ). This extremely rare mushroom is notable for its unusual appearance and disjunct distribution; it is found only in select locales in Texas and Japan. The fruit body, which grows on the stumps or dead roots of cedar elms or dead oaks, somewhat resembles a dark brown or black cigar before it splits open radially into a starlike arrangement of four to seven leathery rays. The interior surface of the fruit body bears the spore-bearing tissue known as the hymenium, and is colored white to brown, depending on its age. The fruit body opening can be accompanied by a distinct hissing sound and the release of a smoky cloud of spores.

<span class="mw-page-title-main">Microascales</span> Order of fungi

The Microascales are an order of fungi in the class Sordariomycetes, subclass Hypocreomycetidae. This is a relatively small order of mostly saprobic fungi that live in soil, rotting vegetation and dung. Some species are plant pathogens, such as Ceratocystis fimbriata, transmitted by beetles to living trees and causing cacao wilt and many other economically important diseases. Species in the genus Pseudallescheria are pathogenic to humans The order was circumscribed in 1980. Wijayawardene et al. in 2020 added more families and genera to the order.

<span class="mw-page-title-main">Herpotrichiellaceae</span> Family of fungi

Herpotrichiellaceae is a family of ascomycetous fungi within the order Chaetothyriales and within the class Eurotiomycetes. It contains 16 genera and about 270 species. The type genus of the family, Herpotrichiella, is now synonymous with Capronia.

Farrowia is a genus of fungi within the Chaetomiaceae family.

<i>Chlamydosauromyces</i> Genus of fungi

Chlamydosauromyces punctatus is the sole species in the monotypic genus of fungi, Chlamydosauromyces in the family, Onygenaceae. It was found in the skin shed from frilled lizard. This fungus is mesophilic and digests hair. It reproduces both sexually and asexually. The fungus has so far not been reported to be pathogenic.

Polytolypa is a monotypic genus of fungus containing the single species Polytolypa hystricis. First classified in the Onygenaceae family, as of 2008 it is considered to be in the Ajellomycetaceae, although there is still uncertainty as to its phylogenetic relationships with other similar genera. This species is only known from a single specimen derived in the laboratory from a specimen of dung of the North American porcupine, Erethizon dorsatum, collected in Ontario, Canada. Polytolypa hystricis contains bioactive compounds that have antifungal activity.

<i>Exophiala dermatitidis</i> Species of fungus

Exophiala dermatitidis is a thermophilic black yeast, and a member of the Herpotrichiellaceae. While the species is only found at low abundance in nature, metabolically active strains are commonly isolated in saunas, steam baths, and dish washers. Exophiala dermatitidis only rarely causes infection in humans, however cases have been reported around the world. In East Asia, the species has caused lethal brain infections in young and otherwise healthy individuals. The fungus has been known to cause cutaneous and subcutaneous phaeohyphomycosis, and as a lung colonist in people with cystic fibrosis in Europe. In 2002, an outbreak of systemic E. dermatitidis infection occurred in women who had received contaminated steroid injections at North Carolina hospitals.

<i>Aphanoascus fulvescens</i> Species of fungus

Aphanoascus fulvescens is a mould fungus that behaves as a keratinophilic saprotroph and belongs to the Ascomycota. It is readily isolated from soil and dung containing keratin-rich tissues that have been separated from their animal hosts. This organism, distributed worldwide, is most commonly found in areas of temperate climate, in keeping with its optimal growth temperature of 28 °C (82 °F). While A. fulvescens is recognized as a geophilic fungal species, it is also a facultative opportunistic pathogen. Although it is not a dermatophyte, A. fulvescens has occasionally been shown to cause onychomycosis infections in humans. Its recognition in the laboratory is clinically important for correct diagnosis and treatment of human dermal infections.

Hanseniaspora guilliermondii is a species of yeast in the family Saccharomycetaceae. In its anamorph form, it is called Kloeckera apis.

Botryotrichum piluliferum is a fungal species first identified in 1885 by Saccardo and Marchal. It was discovered to be the asexual state of a member of the ascomycete genus, Chaetomium. The name B. piluliferum now applies to the fungus in all its states. B. piluliferum has been found worldwide in a wide range of habitats such as animal dung and vegetation. The colonies of this fungus start off white and grow rapidly to a brown colour. The conidia are smooth and white. B. piluliferum grows optimally at a temperature of 25-30 °C and a pH of 5.5.

<i>Myxotrichum chartarum</i> Species of fungus

Myxotrichum chartarum is a psychrophilic and cellulolytic fungus first discovered in Germany by Gustav Kunze in 1823. Its classification has changed many times over its history to better reflect the information available at the time. Currently, M. chartarum is known to be an ascomycete surrounded by a gymnothecium composed of ornate spines and releases asexual ascospores. The presence of cellulolytic processes are common in fungi within the family Myxotrichaceae. M. chartarum is one of many Myxotrichum species known to degrade paper and paper products. Evidence of M. chartarum "red spot" mold formation, especially on old books, can be found globally. As a result, this fungal species and other cellulolytic molds are endangering old works of art and books. Currently, there is no evidence that suggests that species within the family Myxotrichaceae are pathogenic.

Podospora appendiculata is a coprophilous fungus that is most commonly found in the dung of lagomorphs, such as hares and rabbits, in temperate to warm climates. A member of the division Ascomycota, P. appendiculata is characterized by ovoid, hair-studded perithecia which can bear a distinctive violaceous colouring and peridia which are coriaceous, or leathery, in texture. Podospora appendiculata has been shown to produce three compounds with antimicrobial properties.

Magnaporthe rhizophila is a fungus species in the family Magnaporthaceae. These dark mycelial fungi are common pathogens of cereal and grass roots. Rice blast is one disease known to be caused by M. rhizophila and presents with vascular discoloration in the host organism. The fungus lives best in drier humid conditions, explaining why it is most often found in the soils of Australia, South Africa, and the Southeastern United States.

References

  1. "GSD Species Synonymy. Current Name: Capronia mansonii (Schol-Schwarz) E. Müll., Petrini, P.J. Fisher, Samuels & Rossman, Trans. Br. mycol. Soc. 88(1): 73 (1987)". Species Fungorum . Retrieved 2 December 2022.
  2. 1 2 3 4 5 6 Cocolin, L.; Rantsiou, K.; Iucimin, L.; Urso, R.; Cantoni, C.; Comi, G. (2004). "Study of the Ecology of Fresh Sausages and Characterization of Populations of Lactic Acid Bacteria by Molecular Methods". Appl Environ Microbiol. 70 (4): 1883–1894. doi:10.1128/AEM.70.4.1883-1894.2004. PMC   383013 . PMID   15066777.
  3. 1 2 3 4 5 6 7 8 9 10 11 Untereiner, Wendy A. (1997). "Taxonomy of selected members of the ascomycete genus Capronia with notes on anamorph-teleomorph connections". Mycologia. 89 (1): 120–131. doi:10.1080/00275514.1997.12026763.
  4. 1 2 3 Schol-Schwarz, M.B. (1968). "Rhinocladiella, its synonym Fonsecaea and its relation to Phialophora". Antonie van Leeuwenhoek. 34 (2): 119–154. doi:10.1007/BF02046424. PMID   5301320. S2CID   43876060.
  5. 1 2 3 4 5 6 7 8 9 Untereiner, Wendy A. (1995). "Fruiting studies in species of Capronia (Herpotrichiellaceae)". Antonie van Leeuwenhoek. 68 (1): 3–17. doi:10.1007/BF00873288. PMID   8526478. S2CID   40143620.
  6. 1 2 3 4 5 Muller, E.; Petrini, O.; Fisher, P.J; Samuela, G.J; Rossman, A.Y (1987). "Taxonomy and anamorphs of the Herpotrichiellaceae with notes on generic synonymy". Trans. Br. Mycol. Soc. 88 (1): 63–74. doi:10.1016/S0007-1536(87)80186-9.
  7. 1 2 3 Haas, G.; Sontagg, L.; van de Peer, Y.; Uijthof, J.M.J.; Podbielski, A.; Comi, G. (1995). "Phylogenetic analysis of ten black yeast species using nuclear small subunit rRNA gene sequences". Antonie van Leeuwenhoek. 68 (1): 19–33. doi:10.1007/BF00873289. PMID   8526477. S2CID   2819521.
  8. Ellis, M.B. (1971). Dematiaceous hyphomycetes. Surrey, England: Commonwealth Mycological Institute.
  9. Hoog, G.S. de. (1977). "Rhinocladiella and allied genera". Stud. Mycol. 15: 1–140.
  10. 1 2 3 4 5 Untereiner, Wendy A. (1994). "A Simple Method for the in Vitro Production of Pseudothecia in Species of Capronia". Mycologia. 86 (2): 290–295. doi:10.1080/00275514.1994.12026410.
  11. 1 2 Untereiner, Wendy A.; Naveau, Francois A. (1999). "Molecular systematics of the Herpotrichiellaceae with an assessment of the phylogenetic positions of Exophiala dermatitidis and Phialophara americana". Mycologia. 91 (1): 67–83. doi:10.1080/00275514.1999.12060994.