Capture effect

Last updated

In a radio receiver, the capture effect is a phenomenon associated with reception in which only the stronger of two or more signals received within the bandwidth of the receiver passband will be demodulated. The Capture effect therefore enables frequency reuse of the same frequency by imposing a sufficient distance separation, e.g. used in AM communication in the AM(R)S (Aeronautical Aeronautical mobile (R) service), or between FM-BC transmitter for the capture take effect. Alternatively the capture effect enables two frequency ILS-Localizer (ILS-LOC) and ILS-Glide-Path (ILS-GP) to operate at airports in presence of strong refelections, e.g. due to terrain and buildings.

Contents

FM phenomenon

The capture effect is defined as the complete suppression of the weaker signal at the receiver's limiter (if present) where the weaker signal is not amplified, but attenuated. When both signals are nearly equal in strength or are fading independently, the receiver may rapidly switch from one to another and exhibit flutter.

The capture effect can occur at the signal limiter, or in the demodulation stage for circuits that do not require a signal limiter. [1] Some types of radio receiver circuits have a stronger capture effect than others. The measurement of how well a receiver rejects a second signal on the same frequency is called its capture ratio. It is measured as the lowest ratio of the power of two signals that will result in the suppression of the weaker signal.

The capture effect phenomenon was first documented in 1938 by General Electric engineers conducting test transmissions. Two experimental FM stations, located 15 miles (24 km) apart in Albany and Schenectady, New York, were configured to transmit on the same frequency, in order to study how this would affect reception. It was determined that, for most of the path between the two stations, only one of the signals could be heard, with the complete elimination of the other. It was concluded that this effect occurred whenever the stronger signal was about twice as strong as the weaker one. [2] This was significantly different than the case with amplitude modulation signals, where the general standard for broadcasting stations was that to avoid objectionable interference the stronger signal had to be about twenty times that of the weaker one. The capture effect thus allowed co-channel FM broadcasting stations to be located somewhat closer to each other than AM ones, without causing mutual interference.

AM capture effect use

When AM (Amplitude Modulation) transmitter share the same center frequency, the weaker signal will introduce distortions in form of beat frequencies or both signals interfere completely with each other. If only a carrier devoid of modulation is received or added in a receiver, e.g. using a BFO (Beat Frequency Oscillatior), a tone with the frequency offset between the two carrier frequencies will be heard.

By introducing a frequency offset between the carrier frequencies in the magnitude of at least the sum of the highest modulation frequencies employed by both transmitter, will eliminate generation of beat frequencies, e.g. highest modulation frequency is 2.4 kHz therefore the min. frequency offset between both carrier is 4.8 kHz (=2 x 2.4 kHz).

The capture effect is actively employed in Europe for aeronautical VHF-communication in the band 118 MHz to 137 MHz to provide coverage for aircraft flying under ATC (Air Traffic Control) in large ATC sectors that cannot be covered by a single transmitter site. For ATC large sectors up to five transmitter sites are required to provide continuous coverage within the area of a large ATC sector. Transmitter are strategically placed therefore ensuring that not all transmitter will be received at any point in space simultaneously.

Operation of ILS-Localizer and ILS-Glide-Path at airports is often impossible due to strong reflections, e.g. on terrain and buildings. The solution lead to the development of two frequency ILS-LOC and ILS-GP. [3] Two frequency ILS systems use an additional carrier frequencies with a frequency offset of at least 6 kHz (2 x 3kHz as the highest voice modulation frequency), two separate antenna pattern that overlapp only in part and a higher EIRP for the ILS-localizer course signal for a range of up to 25 NM and a lower EIRP for the ILS-Localizer clearance signal for a range between10 NM to 17 NM. For difficult terrain and weather impact 2f ILS-GP are employed. [4] Two frequency ILS-LOC and ILS-GP are an ICAO standard precision approach system and are standardized for worldwide use in ICAO Annex 10. [5]

AM receiver will demodulate any carriers and their side bands that are strong enough for demodulation within the receiver passband resulting in an audio mix, if their carrier frequencies are not separated by the sum of the highest modulation frequencies of employed in both transmitter. If only a carrier devoid of modulation is received or added in a receiver, e.g. using a BFO (Beat Frequency Oscillator) the resulting tone is the frequency offset between the two carrier frequencies. [a]

Digital modulation

For digital modulation schemes it has been shown that for properly implemented on-off keying/amplitude-shift keying systems, co-channel rejection can be better than for frequency-shift keying systems.

See also

Notes

  1. If AM signals are close but not exactly on the same frequency, the reception mix will not only have the audio from both carriers but depending on the carrier separation will include an audible heterodyne beat note equal to the difference between the carrier frequencies. For instance, if one carrier transmits at 1000.000 kHz, and the other at 1000.150 kHz, then a 150 Hz beat note tone mix will result. This mix can also occur when a second AM carrier is received on an adjacent frequency if the receiver's ultimate bandwidth is wide enough to include reception of both signals. In ITU Region 2 locations, consisting of the Americas, for the AM broadcast band this occurs at 10 kHz; elsewhere it can occur at 9 kHz, the AM band frequency spacing commonly used in the rest of the world. Where such an overlap within the passband occurs, a high-pitched heterodyne whistle at precisely 9 or 10 kHz can be heard. This is particularly common at night when signals from adjacent frequencies travel long distances due to skywave. Modern SDR-based receivers can eliminate this by utilizing a brick-wall filter narrower than the channel spacing, which reduces signals outside the passband to inconsequential levels.

Related Research Articles

<span class="mw-page-title-main">Amplitude modulation</span> Radio modulation via wave amplitude

Amplitude modulation (AM) is a modulation technique used in electronic communication, most commonly for transmitting messages with a radio wave. In amplitude modulation, the amplitude of the wave is varied in proportion to that of the message signal, such as an audio signal. This technique contrasts with angle modulation, in which either the frequency of the carrier wave is varied, as in frequency modulation, or its phase, as in phase modulation.

<span class="mw-page-title-main">Frequency modulation</span> Encoding of information in a carrier wave by varying the instantaneous frequency of the wave

Frequency modulation (FM) is the encoding of information in a carrier wave by varying the instantaneous frequency of the wave. The technology is used in telecommunications, radio broadcasting, signal processing, and computing.

In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the carrier signal, with a separate signal called the modulation signal that typically contains information to be transmitted. For example, the modulation signal might be an audio signal representing sound from a microphone, a video signal representing moving images from a video camera, or a digital signal representing a sequence of binary digits, a bitstream from a computer.

<span class="mw-page-title-main">Single-sideband modulation</span> Type of modulation

In radio communications, single-sideband modulation (SSB) or single-sideband suppressed-carrier modulation (SSB-SC) is a type of modulation used to transmit information, such as an audio signal, by radio waves. A refinement of amplitude modulation, it uses transmitter power and bandwidth more efficiently. Amplitude modulation produces an output signal the bandwidth of which is twice the maximum frequency of the original baseband signal. Single-sideband modulation avoids this bandwidth increase, and the power wasted on a carrier, at the cost of increased device complexity and more difficult tuning at the receiver.

<span class="mw-page-title-main">Superheterodyne receiver</span> Type of radio receiver

A superheterodyne receiver, often shortened to superhet, is a type of radio receiver that uses frequency mixing to convert a received signal to a fixed intermediate frequency (IF) which can be more conveniently processed than the original carrier frequency. It was invented by French radio engineer and radio manufacturer Lucien Lévy. Virtually all modern radio receivers use the superheterodyne principle.

<span class="mw-page-title-main">Sideband</span> Radio communications concept

In radio communications, a sideband is a band of frequencies higher than or lower than the carrier frequency, that are the result of the modulation process. The sidebands carry the information transmitted by the radio signal. The sidebands comprise all the spectral components of the modulated signal except the carrier. The signal components above the carrier frequency constitute the upper sideband (USB), and those below the carrier frequency constitute the lower sideband (LSB). All forms of modulation produce sidebands.

<span class="mw-page-title-main">Frequency-division multiplexing</span> Signal processing technique in telecommunications

In telecommunications, frequency-division multiplexing (FDM) is a technique by which the total bandwidth available in a communication medium is divided into a series of non-overlapping frequency bands, each of which is used to carry a separate signal. This allows a single transmission medium such as a microwave radio link, cable or optical fiber to be shared by multiple independent signals. Another use is to carry separate serial bits or segments of a higher rate signal in parallel.

<span class="mw-page-title-main">Carrier wave</span> Sinusoidal wave without any modulation.

In telecommunications, a carrier wave, carrier signal, or just carrier, is a periodic waveform that carries no information that has one or more of its properties modified by an information-bearing signal for the purpose of conveying information.

<span class="mw-page-title-main">Instrument landing system</span> Ground-based visual aid for landing

In aviation, the instrument landing system (ILS) is a precision radio navigation system that provides short-range guidance to aircraft to allow them to approach a runway at night or in bad weather. In its original form, it allows an aircraft to approach until it is 200 feet (61 m) over the ground, within a 12 mile (800 m) of the runway. At that point the runway should be visible to the pilot; if it is not, they perform a missed approach. Bringing the aircraft this close to the runway dramatically increases the range of weather conditions in which a safe landing can be made. Other versions of the system, or "categories", have further reduced the minimum altitudes, runway visual ranges (RVRs), and transmitter and monitoring configurations designed depending on the normal expected weather patterns and airport safety requirements.

A subcarrier is a sideband of a radio frequency carrier wave, which is modulated to send additional information. Examples include the provision of colour in a black and white television system or the provision of stereo in a monophonic radio broadcast. There is no physical difference between a carrier and a subcarrier; the "sub" implies that it has been derived from a carrier, which has been amplitude modulated by a steady signal and has a constant frequency relation to it.

<span class="mw-page-title-main">Digital Radio Mondiale</span> Digital radio broadcasting standard

Digital Radio Mondiale is a set of digital audio broadcasting technologies designed to work over the bands currently used for analogue radio broadcasting including AM broadcasting—particularly shortwave—and FM broadcasting. DRM is more spectrally efficient than AM and FM, allowing more stations, at higher quality, into a given amount of bandwidth, using xHE-AAC audio coding format. Various other MPEG-4 codecs and Opus are also compatible, but the standard now specifies xHE-AAC.

<span class="mw-page-title-main">Non-directional beacon</span> Radio transmitter which emits radio waves in all directions, used as a navigational aid

A non-directional beacon (NDB) or non-directional radio beacon is a radio beacon which does not include inherent directional information. Radio beacons are radio transmitters at a known location, used as an aviation or marine navigational aid. NDB are in contrast to directional radio beacons and other navigational aids, such as low-frequency radio range, VHF omnidirectional range (VOR) and tactical air navigation system (TACAN).

<span class="mw-page-title-main">VHF omnidirectional range</span> Aviation navigation system

Very High Frequency Omnidirectional Range Station (VOR) is a type of short-range VHF radio navigation system for aircraft, enabling aircraft with a VOR receiver to determine the azimuth, referenced to magnetic north, between the aircraft to/from fixed VOR ground radio beacons. VOR and the first DME(1950) system to provide the slant range distance, were developed in the United States as part of a U.S. civil/military programm for Aeronautical Navigation Aids in 1945. Deployment of VOR and DME(1950) began in 1949 by the U.S. CAA. ICAO standardized VOR and DME(1950) in 1950 in ICAO Annex ed.1. Frequencies for the use of VOR are standardized in the very high frequency (VHF) band between 108.00 and 117.95 MHz Chapter 3, Table A. To improve azimuth accuracy of VOR even under difficult siting conditions, Doppler VOR (DVOR) was developed in the 1960s. VOR is according to ICAO rules a primary means navigation system for commercial and general aviation, (D)VOR are gradually decommissioned and replaced by DME-DME RNAV 7.2.3 and satellite based navigation systems such as GPS in the early 21st century. In 2000 there were about 3,000 VOR stations operating around the world, including 1,033 in the US, but by 2013 the number in the US had been reduced to 967. The United States is decommissioning approximately half of its VOR stations and other legacy navigation aids as part of a move to performance-based navigation, while still retaining a "Minimum Operational Network" of VOR stations as a backup to GPS. In 2015, the UK planned to reduce the number of stations from 44 to 19 by 2020.

<span class="mw-page-title-main">Beat frequency oscillator</span>

In a radio receiver, a beat frequency oscillator or BFO is a dedicated oscillator used to create an audio frequency signal from Morse code radiotelegraphy (CW) transmissions to make them audible. The signal from the BFO is mixed with the received signal to create a heterodyne or beat frequency which is heard as a tone in the speaker. BFOs are also used to demodulate single-sideband (SSB) signals, making them intelligible, by essentially restoring the carrier that was suppressed at the transmitter. BFOs are sometimes included in communications receivers designed for short wave listeners; they are almost always found in communication receivers for amateur radio, which often receive CW and SSB signals.

In telecommunications, a pilot signal is a signal, usually a single frequency, transmitted over a communications system for supervisory, control, equalization, continuity, synchronization, or reference purposes.

<span class="mw-page-title-main">Instrument landing system localizer</span> Horizontal guidance system

An instrument landing system localizer, or simply localizer, is a system of horizontal guidance in the instrument landing system, which is used to guide aircraft along the axis of the runway.

Airband or aircraft band is the name for a group of frequencies in the VHF radio spectrum allocated to radio communication in civil aviation, sometimes also referred to as VHF, or phonetically as "Victor". Different sections of the band are used for radionavigational aids and air traffic control.

<span class="mw-page-title-main">FM broadcasting</span> Radio transmission of audio by frequency modulation

FM broadcasting is a method of radio broadcasting that uses frequency modulation (FM) of the radio broadcast carrier wave. Invented in 1933 by American engineer Edwin Armstrong, wide-band FM is used worldwide to transmit high-fidelity sound over broadcast radio. FM broadcasting offers higher fidelity—more accurate reproduction of the original program sound—than other broadcasting techniques, such as AM broadcasting. It is also less susceptible to common forms of interference, having less static and popping sounds than are often heard on AM. Therefore, FM is used for most broadcasts of music and general audio. FM radio stations use the very high frequency range of radio frequencies.

Space modulation is a radio amplitude modulation technique used in instrument landing systems (ILS) that incorporates the use of multiple antennas fed with various radio frequency powers and phases to create different depths of modulation within various volumes of three-dimensional airspace. This modulation method differs from internal modulation methods inside most other radio transmitters in that the phases and powers of the two individual signals mix within airspace, rather than in a modulator.

CCIR System A was the 405-line analog broadcast television system adopted in the UK and Ireland. System A service started in 1936 and was discontinued in 1985.

References

  1. Leentvaar, K.; Flint, J. (May 1976). "The Capture Effect in FM Receivers". IEEE Transactions on Communications. 24 (5): 531–539. doi:10.1109/TCOM.1976.1093327 . Retrieved 1 June 2024.
  2. "Armstrong Soon to Start Staticless Radio", Broadcasting, February 1, 1939, page 19.
  3. FAA RD-69-12, Final Report, Study of two-frequency capture effect on ILS-receivers, Charles Manney, March.1969,.
  4. U.S., FAA-R-6750.1, Final Report, Capture-Effect and Sideband-Reference Glide-Slope performance in the presence of deep snow, Kent Chamberlin, July.1978.
  5. ICAO, Annex 10, Vol.I Radio Navigation Aids, Edition 8, Amendment 93,. In: ICAO, International Standards and Recommended Practices. Juli 2023.