Catechol 2,3-dioxygenase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 1.13.11.2 | ||||||||
CAS no. | 9029-46-3 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
|
Catechol 2,3-dioxygenase (EC 1.13.11.2, 2,3-pyrocatechase, catechol 2,3-oxygenase, catechol oxygenase, metapyrocatechase, pyrocatechol 2,3-dioxygenase) is an enzyme with systematic name catechol:oxygen 2,3-oxidoreductase (decyclizing). [1] [2] [3] [4] [5] This enzyme catalyses the following chemical reaction
This enzyme contains Fe(II).
An oxygenase is any enzyme that oxidizes a substrate by transferring the oxygen from molecular oxygen O2 (as in air) to it. The oxygenases form a class of oxidoreductases; their EC number is EC 1.13 or EC 1.14.
Catechol dioxygenases are metalloprotein enzymes that carry out the oxidative cleavage of catechols. This class of enzymes incorporate dioxygen into the substrate. Catechol dioxygenases belong to the class of oxidoreductases and have several different substrate specificities, including catechol 1,2-dioxygenase, catechol 2,3-dioxygenase, and protocatechuate 3,4-dioxygenase. The active site of catechol dioxygenases most frequently contains iron, but manganese-containing forms are also known.
Catechol 1,2- dioxygenase is an enzyme that catalyzes the oxidative ring cleavage of catechol to form cis,cis-muconic acid:
In enzymology, a 2-aminobenzenesulfonate 2,3-dioxygenase (EC 1.14.12.14) is an enzyme that catalyzes the chemical reaction
In enzymology, an anthranilate 1,2-dioxygenase (deaminating, decarboxylating) (EC 1.14.12.1) is an enzyme that catalyzes the chemical reaction
In enzymology, a biphenyl 2,3-dioxygenase (EC 1.14.12.18) is an enzyme that catalyzes the chemical reaction
In enzymology, a terephthalate 1,2-dioxygenase (EC 1.14.12.15) is an enzyme that catalyzes the chemical reaction
In enzymology, a 2,3-dihydroxybenzoate 2,3-dioxygenase (EC 1.13.11.28) is an enzyme that catalyzes the chemical reaction
In enzymology, a 2,3-dihydroxybenzoate 3,4-dioxygenase (EC 1.13.11.14) is an enzyme that catalyzes the chemical reaction
In enzymology, a 2,4'-dihydroxyacetophenone dioxygenase (EC 1.13.11.41) is an enzyme that catalyzes the chemical reaction
In enzymology, a 3,4-dihydroxyphenylacetate 2,3-dioxygenase (EC 1.13.11.15) is an enzyme that catalyzes the chemical reaction
In enzymology, a 3-carboxyethylcatechol 2,3-dioxygenase (EC 1.13.11.16) is an enzyme that catalyzes the chemical reaction
Ascorbate 2,3-dioxygenase (EC 1.13.11.13) is an enzyme that catalyzes the chemical reaction
Chloridazon-catechol dioxygenase (EC 1.13.11.36) is an enzyme that catalyzes the chemical reaction
In enzymology, an indole 2,3-dioxygenase (EC 1.13.11.17) is an enzyme that catalyzes the chemical reaction
In enzymology, a protocatechuate 3,4-dioxygenase (EC 1.13.11.3) is an enzyme that catalyzes the chemical reaction
In enzymology, tryptophan 2,3-dioxygenase (EC 1.13.11.11) is a heme enzyme that catalyzes the oxidation of L-tryptophan (L-Trp) to N-formyl-L-kynurenine, as the first and rate-limiting step of the kynurenine pathway.
Dioxygenases are oxidoreductase enzymes. Aerobic life, from simple single-celled bacteria species to complex eukaryotic organisms, has evolved to depend on the oxidizing power of dioxygen in various metabolic pathways. From energetic adenosine triphosphate (ATP) generation to xenobiotic degradation, the use of dioxygen as a biological oxidant is widespread and varied in the exact mechanism of its use. Enzymes employ many different schemes to use dioxygen, and this largely depends on the substrate and reaction at hand.
In molecular biology, TauD refers to a protein domain that in many enteric bacteria is used to break down taurine as a source of sulfur under stress conditions. In essence, they are domains found in enzymes that provide bacteria with an important nutrient.
Carbazole 1,9a-dioxygenase (EC 1.14.12.22, CARDO) is an enzyme with systematic name 9H-carbazole,NAD(P)H:oxygen oxidoreductase (2,3-hydroxylating). This enzyme catalyses the following chemical reaction