Cercospora beticola

Last updated

Cercospora beticola
Suikerbiet planten Cercospora beticola.jpg
Cercospora beticola on sugarbeets
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Dothideomycetes
Order: Capnodiales
Family: Mycosphaerellaceae
Genus: Cercospora
Species:
C. beticola
Binomial name
Cercospora beticola
Sacc., (1876)

Cercospora beticola is a fungal plant pathogen which typically infects plants of the genus Beta , within the family of Chenopodiaceae. It is the cause of Cercospora leaf spot disease in sugar beets, spinach and swiss chard. Of these hosts, Cercospora leaf spot is the most economically impactful in sugar beets (Beta vulgaris). Cercospora beticola is a deuteromycete fungus that reproduces using conidia. There is no teleomorph stage. C. beticola is a hemibiotrophic fungus that uses phytotoxins specifically Cercospora beticola toxin (CBT) to kill infected plants. CBT causes the leaf spot symptom and prevents root formation. Yield losses from Cercospora leaf spot are around 20 percent. [1] [2] [3] [4]

Contents

Hosts and symptoms

Hosts of Cercospora beticola include sugar beets ( Beta vulgaris ), swiss chard (Beta vulgaris L. subsp. cicla) and other leafy greens. Symptoms include the random distribution of spots with brownish red rings which eventually cause leaf collapse. Older leaves will have spots of larger diameters as rings grow outward. Conidia are not observable by the unaided eye [1] [2] [5]

Disease cycle

Stromata (a sclerotia-like survival structure containing conidia when made) in field debris starts the life cycle. Under favorable wet conditions, conidia are rain-splashed and insect-carried to new hosts, where, under humid and wet conditions, they germinate and penetrate through stomata. These conidia germinate in polycyclic microcycles until the end of the growing season. At the end of the growing season, C. beticola produces stromata again as a survival structure. Microcycles like the one used by C. beticola are very effective at producing many conidia. Because these conidia are effective at penetrating the host, mycelium is not necessary, and conidia produce their own conidia at each new infection (microcycle). There have been no direct observations of sexual spores in C. beticola. [1] [2] [6] [7]

Management

Copper was historically used to control C. beticola in the field, though today fungicides are more common. C. beticola has been shown to have some resistance to benzimidazole and thiophanate class fungicides. As a result, experts often have recommended fungicide rotation to kill any potential fungicide resistant strains. Some varieties of sugar beet also show resistance to C. beticola, unfortunately they have all had low yields in lab tests. Today the most common fungicides used are QoI, Headline, Proline, Inspire SB, Eminent and Super Tin or Agri Tin [1] [2] [8]

Related Research Articles

<i>Beta vulgaris</i> Species of flowering plant

Beta vulgaris (beet) is a species of flowering plant in the subfamily Betoideae of the family Amaranthaceae. Economically, it is the most important crop of the large order Caryophyllales. It has several cultivar groups: the sugar beet, of greatest importance to produce table sugar; the root vegetable known as the beetroot or garden beet; the leaf vegetable known as chard or spinach beet or silverbeet; and mangelwurzel, which is a fodder crop. Three subspecies are typically recognised. All cultivars, despite their quite different morphologies, fall into the subspecies Beta vulgaris subsp. vulgaris. The wild ancestor of the cultivated beets is the sea beet.

<i>Botrytis cinerea</i> Species of fungus

Botrytis cinerea is a necrotrophic fungus that affects many plant species, although its most notable hosts may be wine grapes. In viticulture, it is commonly known as "botrytis bunch rot"; in horticulture, it is usually called "grey mould" or "gray mold".

<span class="mw-page-title-main">Chard</span> Green leafy vegetable

Chard or Swiss chard is a green leafy vegetable. In the cultivars of the Flavescens Group, the leaf stalks are large and often prepared separately from the leaf blade; the Cicla Group is the leafy spinach beet. The leaf blade can be green or reddish; the leaf stalks are usually white, yellow or red.

<span class="mw-page-title-main">Apple scab</span> Plant disease caused by fungus

Apple scab is a common disease of plants in the rose family (Rosaceae) that is caused by the ascomycete fungus Venturia inaequalis. While this disease affects several plant genera, including Sorbus, Cotoneaster, and Pyrus, it is most commonly associated with the infection of Malus trees, including species of flowering crabapple, as well as cultivated apple. The first symptoms of this disease are found in the foliage, blossoms, and developing fruits of affected trees, which develop dark, irregularly-shaped lesions upon infection. Although apple scab rarely kills its host, infection typically leads to fruit deformation and premature leaf and fruit drop, which enhance the susceptibility of the host plant to abiotic stress and secondary infection. The reduction of fruit quality and yield may result in crop losses of up to 70%, posing a significant threat to the profitability of apple producers. To reduce scab-related yield losses, growers often combine preventive practices, including sanitation and resistance breeding, with reactive measures, such as targeted fungicide or biocontrol treatments, to prevent the incidence and spread of apple scab in their crops.

<span class="mw-page-title-main">Leaf vegetable</span> Plant leaves eaten as a vegetable

Leaf vegetables, also called leafy greens, pot herbs, vegetable greens, or simply greens, are plant leaves eaten as a vegetable, sometimes accompanied by tender petioles and shoots. Leaf vegetables eaten raw in a salad can be called salad greens.

<i>Cercospora</i> Genus of fungi

Cercospora is a genus of ascomycete fungi. Most species have no known sexual stage, and when the sexual stage is identified, it is in the genus Mycosphaerella. Most species of this genus cause plant diseases, and form leaf spots. It is a relatively well-studied genus of fungi, but there are countless species not yet described, and there is still much to learn about the best-known members of the genus.

<i>Pseudocercosporella capsellae</i> Species of fungus

Pseudocercosporella capsellae is a plant pathogen infecting crucifers. P. capsellae is the causal pathogen of white leaf spot disease, which is an economically significant disease in global agriculture. P. capsellae has a significant affect on crop yields on agricultural products, such as canola seed and rapeseed. Researchers are working hard to find effective methods of controlling this plant pathogen, using cultural control, genetic resistance, and chemical control practices. Due to its rapidly changing genome, P. capsellae is a rapidly emerging plant pathogen that is beginning to spread globally and affect farmers around the world.

<i>Erysiphe betae</i> Species of fungus

Erysiphe betae is a fungal plant pathogen. It is a form of powdery mildew that can affect crops of sugar beet, that could cause up to a 30% yield loss. The fungus occurs worldwide in all regions where sugar beet is grown and it also infects other edible crops, e.g. beetroot.

Aphanomyces cochlioides is a plant pathogen that can affect commodity crops like spinach, Swiss chard, beets and related species. In spinach the pathogen is responsible for the black root "rot" that can damage plants.

Cercospora arachidicola is a fungal ascomycete plant pathogen that causes early leaf spot of peanut. Peanuts originated in South America and are cultivated globally in warm, temperate and tropical regions.

Magnaporthe salvinii is a fungus known to attack a variety of grass and rice species, including Oryza sativa and Zizania aquatica. Symptoms of fungal infection in plants include small, black, lesions on the leaves that develop into more widespread leaf rot, which then spreads to the stem and causes breakage. As part of its life cycle, the fungus produces sclerotia that persist in dead plant tissue and the soil. Management of the fungus may be effected by tilling the soil, reducing its nitrogen content, or by open field burning, all of which reduce the number of sclerotia, or by the application of a fungicide.

<i>Elsinoë ampelina</i> Species of fungus

Elsinoë ampelina is a plant pathogen, which is the causal agent of anthracnose on grape.

<i>Cercospora melongenae</i> Fungal disease of eggplant leaves

Cercospora melongenae is a fungal plant pathogen that causes leaf spot on eggplant. It is a deuteromycete fungus that is primarily confined to eggplant species. Some other host species are Solanum aethiopicum and Solanum incanum. This plant pathogen only attacks leaves of eggplants and not the fruit. It is fairly common among the fungi that infect community gardens and home gardens of eggplant. Generally speaking, Cercospora melongenae attacks all local varieties of eggplants, but is most severe on the Philippine eggplant and less parasitic on a Siamese variety.

<i>Beet necrotic yellow vein virus</i> Species of virus

Beet necrotic yellow vein virus (BNYVV) is a plant virus, transmitted by the plasmodiophorid Polymyxa betae. The BNYVV is a member of the genus Benyvirus and is responsible for rhizomania, a disease of sugar beet that causes proliferation of thin rootlets, and leads to a smaller tap root with reduced sugar content. Infected plants are less able to take up water, and wilting can be observed during the warm period of the year. If the infection spreads to the whole plant, vein yellowing, necrosis and yellow spots appear on the leaves, giving the virus its name.

<i>Botrytis fabae</i> Species of fungus

Botrytis fabae is a plant pathogen, a fungus that causes chocolate spot disease of broad or fava bean plants, Vicia faba. It was described scientifically by Mexican-born Galician microbiologist Juan Rodríguez Sardiña in 1929.

Red thread disease is a fungal infection found on lawns and other turfed areas. It is caused by the corticioid fungus Laetisaria fuciformis and has two separate stages. The stage that gives the infection its name is characterised by very thin, red, needle-like strands extending from the grass blade. These are stromata, which can remain viable in soil for two years. After germinating, the stromata infect grass leaf blades through their stomata. The other stage is visible as small, pink, cotton wool-like mycelium, found where the blades meet. It is common when both warmth and humidity are high.

Dollar spot is a fungal disease of turfgrass caused by the four species in the genus Clarireedia, in the family Rutstroemiaceae. The pathogen blights leaf tissues but does not affect turf grass roots or crowns. There is evidence that a fungal mycotoxin produced by the pathogen may cause root damage, including necrosis of the apical meristem in creeping bentgrass. However, the importance of this toxin is unknown and its effects are not considered a direct symptom of dollar spot. The disease is a common concern on golf courses on intensely managed putting greens, fairways and bowling greens. It is also common on less rigorously maintained lawns and recreational fields. Disease symptoms commonly result in poor turf quality and appearance. The disease occurs from late spring through late fall, but is most active under conditions of high humidity and warm daytime temperatures 59–86 °F (15–30 °C) and cool nights in the spring, early summer and fall. The disease infects by producing a mycelium, which can be spread mechanically from one area to another.

<span class="mw-page-title-main">Corn grey leaf spot</span> Fungal disease of maize

Grey leaf spot (GLS) is a foliar fungal disease that affects maize, also known as corn. GLS is considered one of the most significant yield-limiting diseases of corn worldwide. There are two fungal pathogens that cause GLS: Cercospora zeae-maydis and Cercospora zeina. Symptoms seen on corn include leaf lesions, discoloration (chlorosis), and foliar blight. Distinct symptoms of GLS are rectangular, brown to gray necrotic lesions that run parallel to the leaf, spanning the spaces between the secondary leaf veins. The fungus survives in the debris of topsoil and infects healthy crops via asexual spores called conidia. Environmental conditions that best suit infection and growth include moist, humid, and warm climates. Poor airflow, low sunlight, overcrowding, improper soil nutrient and irrigation management, and poor soil drainage can all contribute to the propagation of the disease. Management techniques include crop resistance, crop rotation, residue management, use of fungicides, and weed control. The purpose of disease management is to prevent the amount of secondary disease cycles as well as to protect leaf area from damage prior to grain formation. Corn grey leaf spot is an important disease of corn production in the United States, economically significant throughout the Midwest and Mid-Atlantic regions. However, it is also prevalent in Africa, Central America, China, Europe, India, Mexico, the Philippines, northern South America, and Southeast Asia. The teleomorph of Cercospora zeae-maydis is assumed to be Mycosphaerella sp.

<i>Patellifolia</i> Genus of flowering plants

Patellifolia is a genus of flowering plants in the subfamily Betoideae of the family Amaranthaceae. These are mostly procumbent herbs occurring in the Western Mediterranean region and Macaronesia, with some isolated occurrences in North Africa and at the Horn of Africa. They are interesting as crop wild relatives of sugar beet.

<i>Botrytis squamosa</i> Species of fungus which can damage onion crops

Botrytis squamosa is a fungus that causes leaf blight on onion that is distinctly characterized by the two stages – leaf spotting followed by blighting. The pathogen is an ascomycete that belongs to the family Sclerotiniaceae in the order Helotiales. The lesions start out as whitish streaks and take on a yellow tinge as they mature. They cause yield losses up to 30%. This fungus is endemic to the USA and has also been reported in Europe, Asia, and Australia. Typical management of this disease includes chemical fungicides with significant efforts being made to establish a means of biological control.

References

  1. 1 2 3 4 Weiland, John; Koch, Georg (2004-05-01). "Sugarbeet leaf spot disease (Cercospora beticola Sacc.)†". Molecular Plant Pathology. 5 (3): 157–166. doi: 10.1111/j.1364-3703.2004.00218.x . ISSN   1364-3703. PMID   20565605.
  2. 1 2 3 4 Secor, Gary A; Rivera, Viviana V; Khan, M. F. R; Gudmestad, Neil C (2010). "Monitoring Fungicide Sensitivity of Cercospora beticola of Sugar Beet for Disease Management Decisions". Plant Disease. 94 (11): 1272–1282. doi:10.1094/PDIS-07-09-0471. PMID   30743643.
  3. "Sugarbeets". hort.purdue.edu. Retrieved 2016-12-07.
  4. Schlösser, Eckart (1971-01-01). "The Cercospora beticola toxin". Phytopathologia Mediterranea. 10 (2): 154–158. JSTOR   42684069.
  5. "Spinach, Beet and Swiss Chard - Notes - HORT410 - Vegetable Crops - Department of Horticulture and Landscape Architecture - Purdue University". hort.purdue.edu. Archived from the original on 2016-05-20. Retrieved 2016-12-07.
  6. Jung, Boknam; Kim, Soyeon; Lee, Jungkwan (2014). "Microcyle Conidiation in Filamentous Fungi". Mycobiology. 42 (1): 1–5. doi:10.5941/myco.2014.42.1.1. PMC   4004940 . PMID   24808726.
  7. "Mycology - Structure and Function - Sclerotia and Stromata". bugs.bio.usyd.edu.au. Retrieved 2016-12-07.
  8. Georgopoulos; Dovas, S.g; C (1973). "A serious outbreak of strains of Cercospora beticola resistant to benzimidazole fungicides in Northern Greece". Plant Disease Reporter. 57: 321–324 via Cab Drirect.{{cite journal}}: CS1 maint: multiple names: authors list (link)