Cercospora sojina | |
---|---|
Lesions created by Cercospora sojina | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Fungi |
Division: | Ascomycota |
Class: | Dothideomycetes |
Order: | Capnodiales |
Family: | Mycosphaerellaceae |
Genus: | Cercospora |
Species: | C. sojina |
Binomial name | |
Cercospora sojina K.Hara | |
Cercospora sojina is a fungal plant pathogen which causes frogeye leaf spot of soybeans. Frog eye leaf spot is a major disease on soybeans in the southern U.S. and has recently started to expand into the northern U.S. where soybeans are grown. The disease is also found in other soybean production areas of the world.
The soybean is the main host of this pathogen. When the pathogen occurs on soybeans, it causes small leaf lesions. These lesions, mostly found on upper leaf surfaces, are irregularly circular and consist of red-brown to purple colored borders. The inside of the lesion is often a gray to tan color. When the lesions mature, they are paper thin and the infected leaves appear tattered and weathered. The disease can lead to premature defoliation. The Frogeye leaf spot can also form on the pods and stems of highly susceptible cultivars. Oval and circular lesions that form on the pods and stems have dark-colored margins and light gray to reddish-brown color on the inside. If the pod becomes infected, the seeds can also become infected but may be symptomless. If they do show symptoms, gray blotches form on the seed and a cracked seed coat often occurs.
The plant is most susceptible to an infection when the leaves are young and expanding or if the leaves are old and senescing. With this range of susceptibility, the disease can occur several times throughout the plant canopy if the environment is ideal for the pathogen at each leaf layer emergence. This leads to a layered section of disease on one plant. Within a field, the disease often occurs in patches either small or large throughout the field. During Stages R1-R6 in soybeans and after a period of frequent rainfall is the best time to scout on frogeye leaf spot. This disease is typically present mid to late season.
Cercospora sojina, the causal fungal agent, and Frogeye Leaf Spot, the resulting disease, have a polycyclic infection cycle. Within this cycle, the pathogen can infect multiple plants during the growing season. In the winter, the pathogen is present as mycelium in crop residue and in leftover soybeans from the previous harvest. According to Bradley et al., the fungus can remain in plant residue for a minimum of two years (2016 [1] ).
Conidia is the primary and secondary inoculum of the plant. This asexual structure is produced from conidiophores on infected plant residue (Lin and Kelly, 2018 [2] ). The conidia can also be moved over short distances by wind currents (Mian et al., 2008 [3] ). The most suitable conditions for infection are warm and wet weather between 25 and 30 °C with greater than 90% humidity (2018 [2] ).
Infection can occur at any stage of the soybean growth cycle but occurs most frequently after flowering (Bayer, 2018 [4] ). The fungus has more of a damaging impact when infection occurs before or at flowering (Lin and Kelly, 2018 [2] ). Fungal infection occurs with direct contact from an already infected soybean pod but the fungus can also spread from seed to seed during plant growth. [2] If infection does occur, external plant damage can be seen one to two weeks after contact with the pathogen.
In addition to seed infection, dark narrow lesions on stems and long to circular red-brown lesions on pods can also appear later in the growing season (Bayer, 2018 [4] ). Soybean debris during the growing season contributes to the second inoculum of the disease. Managing the pathogen is most successful when the disease is recognized close to flowering time and before growth stage R5 or at the beginning of seed development. [4]
Cercospora sojina is a fungal pathogen that varies in colony color, growth rate, and spore formation in culture. The main infection structure of the pathogen is the conidia which is produced from light or dark conidiophores and rests on the tip of the structure. The conidia appear translucent and form cylindrical to round tapering shapes. The size varies between 6 micrometers to 40-70 micrometers and depends on how much area is available for growth (Lin and Kelly, 2018 [2] ). The direct pathogenesis of the fungus is unknown but through genetic analysis a plausible suggestion is made. Certain gene clusters in the fungus genome encode for secondary metabolites, such as mycotoxins and pigments, and virulence effectors. The production of these metabolites is elevated during early infection and most likely play a key role in the fungus and plant interaction (Luo et al., 2017 [5] ).
More specifically, when comparing nonresistant and resistance strains of the pathogen from China, researchers observed 5 candidate genes that are linked to virulence. The gene's function was related to metabolic mechanisms and the production of metabolites that can cause reduction in host resistant soybean plants (Gu et al., 2020). [6] Cercosporin is one non-specific colored mycotoxin produced in some Cercospora species. It is suggested to play an important role in the virulence of the pathogen. This mycotoxin is a photosensitizer and can cause oxidative damage to cell structures. Genes that encode for this toxin have been found in some genomes of the fungus but no cercosporin has been found in cultured mycelium or infected plant tissue (Luo et al., 2018; Lin and Kelly, 2018 [2] [5] ).
Frogeye leaf spot is often found after warm, humid weather conditions. Frequent rainfalls over an extended period of time can also promote the disease to form. The fungus is known to overwinter in infested seeds and crop residue. If a producer has a field with continuous production of soybeans, there is a higher chance of frogeye leaf spot typically present.
Generally, lesions take more than one week to develop after the plant has been infected. This causes the disease to not be visible on the younger leaves of the plant until significantly later. Older leaves are not as susceptible to the disease. In severe conditions lesions can be seen on pods and stems too. [7]
Without proper management there can be various consequences of this disease. Yield loss is a huge impact of this pathogen. If a large amount of lesions are present on the leaves of a soybean there is a loss of leaf area index which in turn results in less photosynthesis. With less photosynthesis, less carbohydrate will be made and the plant will produce less seed. There is also ethylene produced within the leaf spots that stimulates defoliation in the leaves. This will further reduce productivity of the plant.
In order to stop yield loss it is important that various methods are used to manage this disease. These include resistance, seed quality, cultural practices and fungicide use. Resistant cultivars exist and can be planted if a producer knows this disease has been a consistent problem. Instead of saving seed, a producer should plant certified disease free seed to reduce the risk of bringing the pathogen into the field. Seed Quality is important and can prevent the survival stage of the disease cycle.
Rotation with crops not susceptible to the disease, like corn and small grains, can be a form of cultural control of frogeye leaf spot. This will take away the host in the following season so the survival structure will not have a place to go. Using tillage to disturb the pathogen's survival structures will also reduce the disease in the future.
Fungicides can be applied to the foliar from the R1-R4 stage of soybeans (late flowering to pod-filling stages). This kind of application can reduce the incidence and severity of the disease. Yield and seed quality can also be improved. In the United States, Frogeye leaf spot has been reported to have resistance to Quinone outside inhibitors (strobilurins). Using multiple active ingredients for a fungicide application can help prevent resistance. Seed treatments are a preventative method that can reduce the threat frogeye leaf spot.
None of these methods have been proven to be better than others but by using multiple of these management tools a grower will help reduce the amount of inoculum available in the field and assist in protecting the plants from infection.
The pathogen is a serious concern to soybean farmers and can cause detrimental yield loss during the growing season. Since 2000, the fungus has been present in the northern and southern U.S. states as well as 27 other countries spanning North and South America, Europe Africa and Asia (Lin and Kelly 2018 [2] ). The fungus is very prevalent in the southern U.S., but in previous years it has spread to northern soybean fields (Smith, 2020 [8] ). During a wet season, the fungus can cause up to a 30% loss of soybean crop in some fields (Bayer, 2018 [4] ). Other authors note a yield loss as high as 60% due to the reduction in photosynthetic area, early leaf loss and reduced seed quality (Lin and Kelly, 2018 [2] ).
Crop reduction from the pathogen can differ each year depending on the environmental conditions. Between 2010 and 2014, bushel loss varied between 3,727 and 18,147 (bushels in thousands) in the United States. Another source states that in Midwestern states between 1996 and 2000, the estimated loss was 460,000 bushels and between 2013 and 2017 the estimated loss was reported as 7,600,000 bushels in the same areas (Stoetzer, 2019 [9] ).
Attempts to reduce the presence of the fungus have been employed, however, Cercospora sojina still remains a threat to farmers. Resistance to fungicide has already occurred in 13 U.S. states at the end of 2016. New versions of the fungal genome have also been observed across the U.S., Brazil, China and other regions where soybeans are grown that have varying virulence and resistance levels (Lin and Kelly, 2018; Gu et al., 2020 [6] [2] ). Warmer winter temperatures have been suggested as a possible contributor to an increase in Frogeye Spot disease as well as susceptible soybeans and conservation tillage. [2] If leftover residue from infected plants is not removed and crop rotation does not occur, the fungus will continue to develop into the next growing season.
Pyrenophora teres is a necrotrophic fungal pathogen of some plant species, the most significant of which are economically important agricultural crops such as barley. Toxins include aspergillomarasmine A and related compounds.
Pseudocercosporella capsellae is a plant pathogen infecting crucifers. P. capsellae is the causal pathogen of white leaf spot disease, which is an economically significant disease in global agriculture. P. capsellae has a significant effect on crop yields on agricultural products, such as canola seed and rapeseed. Researchers are working hard to find effective methods of controlling this plant pathogen, using cultural control, genetic resistance, and chemical control practices. Due to its rapidly changing genome, P. capsellae is a rapidly emerging plant pathogen that is beginning to spread globally and affect farmers around the world.
Mycosphaerella coffeicola is a sexually reproducing fungal plant pathogen. It is most commonly referred to as the asexual organism Cercospora coffeicola.
Pyrenophora tritici-repentis (teleomorph) and Drechslera tritici-repentis (anamorph) is a necrotrophic plant pathogen of fungal origin, phylum Ascomycota. The pathogen causes a disease originally named yellow spot but now commonly called tan spot, yellow leaf spot, yellow leaf blotch or helminthosporiosis. At least eight races of the pathogen are known to occur based on their virulence on a wheat differential set.
Diplocarpon earlianum is a species of fungus that causes disease in strawberry plants called strawberry leaf scorch. The disease overwinters in plant debris and infects strawberry plants during the spring season when it is wet. The five main methods to reduce strawberry leaf scorch include: irrigation techniques, crop rotation, planting resistant and disease-free seeds, fungicide use, and sanitation measures. Control of strawberry leaf scorch is important because it is responsible for the majority of disease in strawberries. Diplocarpon earliana affects the fruit quality and yield of the strawberry crop. Losses range from negligible to severe depending on numerous epidemiological factors including cultivar susceptibility, type of cropping system, and weather conditions
Ascochyta is a genus of ascomycete fungi, containing several species that are pathogenic to plants, particularly cereal crops. The taxonomy of this genus is still incomplete. The genus was first described in 1830 by Marie-Anne Libert, who regarded the spores as minute asci and the cell contents as spherical spores. Numerous revisions to the members of the genus and its description were made for the next several years. Species that are plant pathogenic on cereals include, A. hordei, A. graminea, A. sorghi, A. tritici. Symptoms are usually elliptical spots that are initially chlorotic and later become a necrotic brown. Management includes fungicide applications and sanitation of diseased plant tissue debris.
Cercospora arachidicola is a fungal ascomycete plant pathogen that causes early leaf spot of peanut. Peanuts originated in South America and are cultivated globally in warm, temperate and tropical regions.
Mycosphaerella cruenta, also called Pseudocercosopora cruenta in its asexual stage, is a fungal plant pathogen belonging to the group Ascomycota. It can affect several legume plants, including species of Phaseolus, Vigna, Calopogonium, Lablab niger, Mucuna and Stizolobium deeringianum [Mucuna pruriens][2]. It causes cowpea cercospora leaf spot, one of the most widespread and significant plant diseases in Africa and Asia. A city in China reported a 100% Mycosphaerella cruenta infection rate on cowpea in 2014[5]. In Africa, an epidemic can cause a yield loss of up to 40% [3].
Alternaria solani is a fungal pathogen that produces a disease in tomato and potato plants called early blight. The pathogen produces distinctive "bullseye" patterned leaf spots and can also cause stem lesions and fruit rot on tomato and tuber blight on potato. Despite the name "early", foliar symptoms usually occur on older leaves. If uncontrolled, early blight can cause significant yield reductions. Primary methods of controlling this disease include preventing long periods of wetness on leaf surfaces and applying fungicides. Early blight can also be caused by Alternaria tomatophila, which is more virulent on stems and leaves of tomato plants than Alternaria solani.
Peronospora manshurica is a plant pathogen. It is a widespread disease on the leaves of soybeans and other crop plants. The fungi is commonly referred to as downy mildew, "leafspot", or "leaf-spot".
Ascochyta pisi is a fungal plant pathogen that causes ascochyta blight on pea, causing lesions of stems, leaves, and pods. These same symptoms can also be caused by Ascochyta pinodes, and the two fungi are not easily distinguishable.
Alternaria helianthi is a fungal plant pathogen causing a disease in sunflowers known as Alternaria blight of sunflower.
Cercospora melongenae is a fungal plant pathogen that causes leaf spot on eggplant. It is a deuteromycete fungus that is primarily confined to eggplant species. Some other host species are Solanum aethiopicum and Solanum incanum. This plant pathogen only attacks leaves of eggplants and not the fruit. It is fairly common among the fungi that infect community gardens and home gardens of eggplant. Generally speaking, Cercospora melongenae attacks all local varieties of eggplants, but is most severe on the Philippine eggplant and less parasitic on a Siamese variety.
Botrytis fabae is a plant pathogen, a fungus that causes chocolate spot disease of broad or fava bean plants, Vicia faba. It was described scientifically by Mexican-born Galician microbiologist Juan Rodríguez Sardiña in 1929.
Grey leaf spot (GLS) is a foliar fungal disease that affects maize, also known as corn. GLS is considered one of the most significant yield-limiting diseases of corn worldwide. There are two fungal pathogens that cause GLS: Cercospora zeae-maydis and Cercospora zeina. Symptoms seen on corn include leaf lesions, discoloration (chlorosis), and foliar blight. Distinct symptoms of GLS are rectangular, brown to gray necrotic lesions that run parallel to the leaf, spanning the spaces between the secondary leaf veins. The fungus survives in the debris of topsoil and infects healthy crops via asexual spores called conidia. Environmental conditions that best suit infection and growth include moist, humid, and warm climates. Poor airflow, low sunlight, overcrowding, improper soil nutrient and irrigation management, and poor soil drainage can all contribute to the propagation of the disease. Management techniques include crop resistance, crop rotation, residue management, use of fungicides, and weed control. The purpose of disease management is to prevent the amount of secondary disease cycles as well as to protect leaf area from damage prior to grain formation. Corn grey leaf spot is an important disease of corn production in the United States, economically significant throughout the Midwest and Mid-Atlantic regions. However, it is also prevalent in Africa, Central America, China, Europe, India, Mexico, the Philippines, northern South America, and Southeast Asia. The teleomorph of Cercospora zeae-maydis is assumed to be Mycosphaerella sp.
Ascochyta blights occur throughout the world and can be of significant economic importance. Three fungi contribute to the ascochyta blight disease complex of pea. Ascochyta pinodes causes Mycosphaerella blight. Ascochyta pinodella causes Ascochyta foot rot, and Ascochyta pisi causes Ascochyta blight and pod spot. Of the three fungi, Ascochyta pinodes is of the most importance. These diseases are conducive under wet and humid conditions and can cause a yield loss of up to fifty percent if left uncontrolled. The best method to control ascochyta blights of pea is to reduce the amount of primary inoculum through sanitation, crop-rotation, and altering the sowing date. Other methods—chemical control, biological control, and development of resistant varieties—may also be used to effectively control ascochyta diseases.
Southern corn leaf blight (SCLB) is a fungal disease of maize caused by the plant pathogen Bipolaris maydis.
Alternaria black spot of canola or grey leaf spot is an ascomycete fungal disease caused by a group of pathogens including: Alternaria brassicae, A. alternata and A. raphani. This pathogen is characterized by dark, sunken lesions of various size on all parts of the plant, including the leaves, stem, and pods. Its primary economic host is canola. In its early stages it only affects the plants slightly by reducing photosynthesis, however as the plant matures it can cause damage to the seeds and more, reducing oil yield as well.
Alternaria brassicicola is a fungal necrotrophic plant pathogen that causes black spot disease on a wide range of hosts, particularly in the genus of Brassica, including a number of economically important crops such as cabbage, Chinese cabbage, cauliflower, oilseeds, broccoli and canola. Although mainly known as a significant plant pathogen, it also contributes to various respiratory allergic conditions such as asthma and rhinoconjunctivitis. Despite the presence of mating genes, no sexual reproductive stage has been reported for this fungus. In terms of geography, it is most likely to be found in tropical and sub-tropical regions, but also in places with high rain and humidity such as Poland. It has also been found in Taiwan and Israel. Its main mode of propagation is vegetative. The resulting conidia reside in the soil, air and water. These spores are extremely resilient and can overwinter on crop debris and overwintering herbaceous plants.
Alternaria leaf spot or Alternaria leaf blight are a group of fungal diseases in plants, that have a variety of hosts. The diseases infects common garden plants, such as cabbage, and are caused by several closely related species of fungi. Some of these fungal species target specific plants, while others have been known to target plant families. One commercially relevant plant genus that can be affected by Alternaria Leaf Spot is Brassica, as the cosmetic issues caused by symptomatic lesions can lead to rejection of crops by distributors and buyers. When certain crops such as cauliflower and broccoli are infected, the heads deteriorate and there is a complete loss of marketability. Secondary soft-rotting organisms can infect stored cabbage that has been affected by Alternaria Leaf Spot by entering through symptomatic lesions. Alternaria Leaf Spot diseases that affect Brassica species are caused by the pathogens Alternaria brassicae and Alternaria brassicicola.
1 Frogeye Leaf Spot." (n.d.): n. pag. University of Tennessee. Institute of Agriculture. Web. 25 Oct. 2016.
http://guide.utcrops.com/soybean/foliar-diseases/frogeye-leaf-spot/
2 "Frogeye Leaf Spot." Frogeye Leaf Spot : Crop Diseases : University of Minnesota Extension. University of Minnesota, n.d. Web. Nov. 2016. <https://web.archive.org/web/20161210174858/http://www.extension.umn.edu/agriculture/crop-diseases/soybean/frogeyeleafspot.html>.
3 Mueller, Daren, Kiersten Wise, Adam Sisson, Damon Smith, Edward Sikora, Carl Bradley, and Alison Roberstson, eds. A Farmer's Guide To Soybean Diseases. St. Paul: American Phytopathological Society, 2016. Print.
4 Mian, Rouf. "Genetic Resistance of Soybean to Frogeye Leaf Spot, Mapping of Rcs3 Gene, and Breeding for Resistance." (n.d.): n. pag. USDA-ARS. Web. 26 Oct. 2016.
http://soybase.org/meeting_presentations/soybean_breeders_workshop/SBW_2010/Mian.pdf%5B%5D
5 Smith, Damon. "Frogeye Leaf Spot." WISCONSIN FIELD CROPS PATHOLOGY. University of Wisconsin-Extension, n.d. Web. Nov. 2016. <http://fyi.uwex.edu/fieldcroppathology/soybean_pests_diseases/frogeye-leaf-spot/
6 Westphal, Andreas, T. Scott. Abney, Gregory Shaner Diseases of Soybean: Frogeye Leaf Spot, BP-131-W (n.d.): n. pag. University of Purdue, Aug. 2006. https://www.extension.purdue.edu/extmedia/bp/bp-131-w.pdf.