Chordae tendineae

Last updated
Chordae tendineae
Heart diagram-en.svg
The chordae tendineae connect the valves to the heart muscle
Muscolopapillare+cordetendinee.jpg
Papillary muscles and chordae tendineae
Details
Identifiers
Latin chordae tendineae cordis
MeSH D002815
TA98 A12.1.00.023
TA2 4047, 4069
FMA 76527
Anatomical terminology

The chordae tendineae (SG: chorda tendinea) or tendinous cords, colloquially known as the heart strings, are inelastic cords of fibrous connective tissue that connect the papillary muscles to the tricuspid valve and the mitral valve in the heart. [1] [2]

Contents

Structure

The chordae tendineae connect the atrioventricular valves (tricuspid and mitral), to the papillary muscles within the ventricles. [2] Multiple chordae tendineae attach to each leaflet or cusp of the valves. [3] Chordae tendineae contain elastin in a delicate structure notably at their periphery. [4]

Tendon of Todaro

The tendon of Todaro is a continuation of the Eustachian valve of the inferior vena cava and the valve of the coronary sinus. Along with the opening of the coronary sinus and the septal cusp of the tricuspid valve, it makes up Koch's triangle. The apex of Koch's triangle is the location of the atrioventricular node. [5]

Function

A medical illustration showing a cross section of the heart and lungs, chordae tendineae visible. Heart coronal xs.jpg
A medical illustration showing a cross section of the heart and lungs, chordae tendineae visible.

During atrial systole, blood flows from the atria to the ventricles down the pressure gradient. Chordae tendineae are relaxed because the atrioventricular valves are forced open. [6]

When the ventricles of the heart contract in ventricular systole, the increased blood pressures in both chambers push the AV valves to close simultaneously, preventing backflow of blood into the atria. Since the blood pressure in atria is much lower than that in the ventricles, the flaps attempt to evert to the low pressure regions. The chordae tendineae prevent this prolapse by becoming tense, which pulls on the flaps, holding them in closed position. [6]

Clinical significance

Ruptured chordae tendineae

Valvular heart disease can lead to ruptured chordae tendineae. [7] This can cause severe mitral insufficiency. [7] [8]

Parachute mitral valve

Parachute mitral valve occurs when all the chordae tendineae of the mitral valve attach to a single papillary muscle. [9] [10] [11] This causes mitral valve stenosis at an early age. [10] It is a rare congenital heart defect. [11] Although it often causes mitral insufficiency, it may not present any symptoms. [10]

Additional images

See also

Related Research Articles

<span class="mw-page-title-main">Heart</span> Organ found inside most animals

The heart is a muscular organ in most animals. This organ pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as carbon dioxide to the lungs. In humans, the heart is approximately the size of a closed fist and is located between the lungs, in the middle compartment of the chest, called the mediastinum.

<span class="mw-page-title-main">Heart valve</span> A flap of tissue that prevent backflow of blood around the heart

A heart valve is a biological one-way valve that allows blood to flow in one direction through the chambers of the heart. Four valves are usually present in a mammalian heart and together they determine the pathway of blood flow through the heart. A heart valve opens or closes according to differential blood pressure on each side.

<span class="mw-page-title-main">Heart sounds</span> Noise generated by the beating heart

Heart sounds are the noises generated by the beating heart and the resultant flow of blood through it. Specifically, the sounds reflect the turbulence created when the heart valves snap shut. In cardiac auscultation, an examiner may use a stethoscope to listen for these unique and distinct sounds that provide important auditory data regarding the condition of the heart.

<span class="mw-page-title-main">Mitral valve</span> Valve in the heart connecting the left atrium and left ventricle

The mitral valve, also known as the bicuspid valve or left atrioventricular valve, is one of the four heart valves. It has two cusps or flaps and lies between the left atrium and the left ventricle of the heart. The heart valves are all one-way valves allowing blood flow in just one direction. The mitral valve and the tricuspid valve are known as the atrioventricular valves because they lie between the atria and the ventricles.

<span class="mw-page-title-main">Tricuspid valve</span> One-way valve present between right auricle and right ventricle

The tricuspid valve, or right atrioventricular valve, is on the right dorsal side of the mammalian heart, at the superior portion of the right ventricle. The function of the valve is to allow blood to flow from the right atrium to the right ventricle during diastole, and to close to prevent backflow (regurgitation) from the right ventricle into the right atrium during right ventricular contraction (systole).

Systole is the part of the cardiac cycle during which some chambers of the heart contract after refilling with blood.

<span class="mw-page-title-main">Ventricle (heart)</span> Chamber of the heart

A ventricle is one of two large chambers toward the bottom of the heart that collect and expel blood towards the peripheral beds within the body and lungs. The blood pumped by a ventricle is supplied by an atrium, an adjacent chamber in the upper heart that is smaller than a ventricle. Interventricular means between the ventricles, while intraventricular means within one ventricle.

<span class="mw-page-title-main">Papillary muscle</span> Heart ventricle muscles

The papillary muscles are muscles located in the ventricles of the heart. They attach to the cusps of the atrioventricular valves via the chordae tendineae and contract to prevent inversion or prolapse of these valves on systole.

<span class="mw-page-title-main">Mitral regurgitation</span> Form of valvular heart disease

Mitral regurgitation(MR), also known as mitral insufficiency or mitral incompetence, is a form of valvular heart disease in which the mitral valve is insufficient and does not close properly when the heart pumps out blood. It is the abnormal leaking of blood backwards – regurgitation from the left ventricle, through the mitral valve, into the left atrium, when the left ventricle contracts. Mitral regurgitation is the most common form of valvular heart disease.

A transthoracic echocardiogram (TTE) is the most common type of echocardiogram, which is a still or moving image of the internal parts of the heart using ultrasound. In this case, the probe is placed on the chest or abdomen of the subject to get various views of the heart. It is used as a non-invasive assessment of the overall health of the heart, including a patient's heart valves and degree of heart muscle contraction. The images are displayed on a monitor for real-time viewing and then recorded.

<span class="mw-page-title-main">Atrioventricular septal defect</span> Medical condition

Atrioventricular septal defect (AVSD) or atrioventricular canal defect (AVCD), also known as "common atrioventricular canal" or "endocardial cushion defect" (ECD), is characterized by a deficiency of the atrioventricular septum of the heart that creates connections between all four of its chambers. It is a very specific combination of 3 defects:

<span class="mw-page-title-main">Right coronary artery</span> Blood vessel supplying the human heart

In the blood supply of the heart, the right coronary artery (RCA) is an artery originating above the right cusp of the aortic valve, at the right aortic sinus in the heart. It travels down the right coronary sulcus, towards the crux of the heart. It gives off many branches, including the sinoatrial nodal artery, right marginal artery, posterior interventricular artery, conus artery, and atrioventricular nodal branch. It contributes the right side of the heart, and parts of the interventricular septum.

In cardiology, the cardiac skeleton, also known as the fibrous skeleton of the heart, is a high-density homogeneous structure of connective tissue that forms and anchors the valves of the heart, and influences the forces exerted by and through them. The cardiac skeleton separates and partitions the atria from the ventricles .The heart's cardiac skeleton comprises four dense connective tissue rings that encircle the mitral and tricuspid atrioventricular (AV) canals and extend to the origins of the pulmonary trunk and aorta. This provides crucial support and structure to the heart while also serving to electrically isolate the atria from the ventricles.

Heart valve dysplasia is a congenital heart defect which affects the aortic, pulmonary, mitral, and tricuspid heart valves. Dysplasia of the mitral and tricuspid valves can cause leakage of blood or stenosis.

<span class="mw-page-title-main">Trabeculae carneae</span> Muscular columns found in the heart

The trabeculae carneae are rounded or irregular muscular columns which project from the inner surface of the right and left ventricle of the heart. These are different from the pectinate muscles, which are present in the atria of the heart. In development, trabeculae carneae are among the first of the cardiac structures to develop in the embryonic cardiac tube. Further, throughout development some trabeculae carneae condense to form the myocardium, papillary muscles, chordae tendineae, and septum.

<span class="mw-page-title-main">Moderator band (heart)</span> Muscle band in the right ventricle of the heart

The moderator band is a band of cardiac muscle found in the right ventricle of the heart. It is well-marked in sheep and some other animals, including humans. It extends from the base of the anterior papillary muscle of the tricuspid valve to the ventricular septum.

Shone's syndrome is a rare congenital heart disease described by Shone in 1963. In the complete form, four left-sided defects are present:

<span class="mw-page-title-main">Third heart sound</span> Medical condition

The third heart sound or S3 is a rare extra heart sound that occurs soon after the normal two "lub-dub" heart sounds (S1 and S2). S3 is associated with heart failure.

Cardiac physiology or heart function is the study of healthy, unimpaired function of the heart: involving blood flow; myocardium structure; the electrical conduction system of the heart; the cardiac cycle and cardiac output and how these interact and depend on one another.

The heart is a muscular organ situated in the mediastinum. It consists of four chambers, four valves, two main arteries, and the conduction system. The left and right sides of the heart have different functions: the right side receives de-oxygenated blood through the superior and inferior venae cavae and pumps blood to the lungs through the pulmonary artery, and the left side receives saturated blood from the lungs.

References

  1. Hacking, Craig. "Chordae tendineae | Radiology Reference Article | Radiopaedia.org". Radiopaedia.
  2. 1 2 Faletra, Francesco F.; Narula, Jagat (2017-01-01), Ellenbogen, Kenneth A.; Wilkoff, Bruce L.; Kay, G. Neal; Lau, Chu-Pak (eds.), "2 - Imaging of Cardiac Anatomy", Clinical Cardiac Pacing, Defibrillation and Resynchronization Therapy (Fifth Edition), Elsevier, pp. 15–60, doi:10.1016/b978-0-323-37804-8.00002-x, ISBN   978-0-323-37804-8 , retrieved 2020-11-25
  3. Lane, Rondall; Schulman, Peter M. (2007-01-01), Parsons, Polly E.; Wiener-Kronish, Jeanine P. (eds.), "Chapter 30 - Valvular Heart Disease", Critical Care Secrets (Fourth Edition), Philadelphia: Mosby, pp. 191–199, doi:10.1016/b978-1-4160-3206-9.10030-8, ISBN   978-1-4160-3206-9 , retrieved 2020-11-25
  4. Green, EM; Mansfield, JC; Bell, JS; Winlove, CP (2014-04-06). "The structure and micromechanics of elastic tissue". Interface Focus. 4 (2): 20130058. doi:10.1098/rsfs.2013.0058. PMC   3982448 . PMID   24748954.
  5. McGuire, Mark A.; Johnson, David C.; Robotin, Monica; Richards, David A.; Uther, John B.; Ross, David L. (1992-09-15). "Dimensions of the triangle of Koch in humans". The American Journal of Cardiology. 70 (7): 829–830. doi:10.1016/0002-9149(92)90574-I. ISSN   0002-9149. PMID   1519544.
  6. 1 2 Karas, S.; Elkins, R. C. (1970). "Mechanism of Function of the Mitral Valve Leaflets, Chordae Tendineae and Left Ventricular Papillary Muscles in Dogs". Circulation Research. 26 (6): 689–96. doi: 10.1161/01.RES.26.6.689 . PMID   5422929.
  7. 1 2 Vaideeswar, P.; Butany, J. (2016-01-01), Buja, L. Maximilian; Butany, Jagdish (eds.), "Chapter 12 - Valvular Heart Disease", Cardiovascular Pathology (Fourth Edition), San Diego: Academic Press, pp. 485–528, ISBN   978-0-12-420219-1 , retrieved 2020-11-25
  8. Reece, T. Brett; Fullerton, David A. (2009-01-01), Harken, Alden H.; Moore, Ernest E. (eds.), "Chapter 76 - Mitral Regurgitation", Abernathy's Surgical Secrets (Sixth Edition), Philadelphia: Mosby, pp. 387–390, doi:10.1016/b978-0-323-05711-0.00076-8, ISBN   978-0-323-05711-0 , retrieved 2020-11-25
  9. Llewelyn, Rhys. "Parachute mitral valve | Radiology Reference Article | Radiopaedia.org". Radiopaedia.
  10. 1 2 3 Boutsikou, Maria; Li, Wei (2018-01-01), Gatzoulis, Michael A.; Webb, Gary D.; Daubeney, Piers E. F. (eds.), "6 - Echocardiography", Diagnosis and Management of Adult Congenital Heart Disease (Third Edition), Elsevier, pp. 41–76, doi:10.1016/b978-0-7020-6929-1.00006-x, ISBN   978-0-7020-6929-1 , retrieved 2020-11-25
  11. 1 2 Tay Lik Wui, Edgar; Yip, James W. L.; Li, Wei (2011-01-01), Gatzoulis, Michael A.; Webb, Gary D.; Daubeney, Piers E. F. (eds.), "5 - Echocardiography", Diagnosis and Management of Adult Congenital Heart Disease (Second Edition), Saint Louis: Churchill Livingstone, pp. 28–43, doi:10.1016/b978-0-7020-3426-8.00005-8, ISBN   978-0-7020-3426-8 , retrieved 2020-11-25
  12. "UOTW #75 - Ultrasound of the Week". Ultrasound of the Week. 4 November 2016. Retrieved 27 May 2017.