Fold of left vena cava

Last updated
Fold of the left vena cava

Gray480.png

Diagram showing completion of development of the parietal veins.
Details
Identifiers
Latin Plica venae cavae sinistrae,
ligamentum venae cavae sinistrae
TA A12.1.08.010
FMA 7224

Anatomical terminology

The fold of the left vena cava, ligament of the left vena cava, or vestigial fold of Marshall, is a triangular fold of the serous pericardium that lies between the left pulmonary artery and subjacent pulmonary vein.

Pericardium double-walled sac containing the heart and the roots of the great vessels

The pericardium is a double-walled sac containing the heart and the roots of the great vessels. The pericardial sac has two layers, a serous layer and a fibrous layer. It encloses the pericardial cavity which contains pericardial fluid.

Pulmonary artery artery in the pulmonary circulation that carries deoxygenated blood from the heart to the lungs

A pulmonary artery is an artery in the pulmonary circulation that carries deoxygenated blood from the right side of the heart to the lungs. The largest pulmonary artery is the main pulmonary artery. or pulmonary trunk from the heart, and the smallest ones are the arterioles, which lead to the capillaries that surround the pulmonary alveoli.

Pulmonary vein The veins that transfer oxygenated blood from the lungs to the heart

The pulmonary veins are the veins that transfer oxygenated blood from the lungs to the heart. The largest pulmonary veins are the four main pulmonary veins, two from each lung that drain into the left atrium of the heart. The pulmonary veins are part of the pulmonary circulation.

It is formed by the folding of the serous layer over the remnant of the lower part of the left superior vena cava (duct of Cuvier), which becomes obliterated during fetal life, and remains as a fibrous band stretching from the highest left intercostal vein to the left atrium, where it is continuous with a small cardiac vein, the vein of the left atrium (oblique vein of Marshall), which opens into the coronary sinus.

Coronary sinus collection of veins joined together to form a large vessel that collects blood from the heart muscle

The coronary sinus is a collection of veins joined together to form a large vessel that collects blood from the heart muscle (myocardium). It delivers less-oxygenated blood to the right atrium, as do the superior and inferior vena cavae. It is present in all mammals, including humans.

Related Research Articles

Vein blood vessels that carry blood towards the heart

Veins are blood vessels that carry blood toward the heart. Most veins carry deoxygenated blood from the tissues back to the heart; exceptions are the pulmonary and umbilical veins, both of which carry oxygenated blood to the heart. In contrast to veins, arteries carry blood away from the heart.

Circulatory system Organ system for circulating blood in animals

The circulatory system, also called the cardiovascular system or the vascular system, is an organ system that permits blood to circulate and transport nutrients, oxygen, carbon dioxide, hormones, and blood cells to and from the cells in the body to provide nourishment and help in fighting diseases, stabilize temperature and pH, and maintain homeostasis.

Superior vena cava One of two veinous trunks bringing deoxygenated blood back to the heart

The superior vena cava (SVC) is the superior of the two venae cavae, the great venous trunks that return deoxygenated blood from the systemic circulation to the right atrium of the heart. It is a large-diameter (24 mm), yet short, vein that receives venous return from the upper half of the body, above the diaphragm. The SVC is located in the anterior right superior mediastinum. It is the typical site of central venous access (CVA) via a central venous catheter or a peripherally inserted central catheter. Mentions of "the cava" without further specification usually refer to the SVC.

Inferior vena cava One of two veinous trunks bringing deoxygenated blood back to the heart

The inferior vena cava is a large vein that carries the deoxygenated blood from the lower and middle body into the right atrium of the heart. Its walls are rigid and it has valves so the blood does not flow down via gravity. It is formed by the joining of the right and the left common iliac veins, usually at the level of the fifth lumbar vertebra.

Phrenic nerve

The phrenic nerve is a nerve that originates in the neck (C3-C5) and passes down between the lung and heart to reach the diaphragm. It is important for breathing, as it passes motor information to the diaphragm and receives sensory information from it. There are two phrenic nerves, a left and a right one.

Azygos vein

The azygos vein is a vein running up the side of the thoracic vertebral column draining itself towards the superior vena cava. It connects the systems of superior vena cava and inferior vena cava and can provide an alternative path for blood to the right atrium when either of the venae cavae is blocked.

Atrium (heart) chamber of the heart

The atrium is the upper chamber through which blood enters the heart. There are two atria in the human heart – the left atrium connected to the lungs, and the right atrium connected to the venous circulation. The atria receive blood, and when the heart muscle contracts they pump blood to the ventricles. All animals with a closed circulatory system have at least one atrium.

The term Great veins can refer to either —

Scimitar syndrome Human disease

Scimitar syndrome, or congenital pulmonary venolobar syndrome, is a rare congenital heart defect characterized by anomalous venous return from the right lung. This anomalous pulmonary venous return can be either partial (PAPVR) or total (TAPVR). The syndrome associated with PAPVR is more commonly known as Scimitar syndrome after the curvilinear pattern created on a chest radiograph by the pulmonary veins that drain to the inferior vena cava. This radiographic density often has the shape of a scimitar, a type of curved sword. The syndrome was first described by Catherine Neill in 1960.

Oblique vein of the left atrium

The oblique vein of the left atrium is a small vessel which descends obliquely on the back of the left atrium and ends in the coronary sinus near its left extremity; it is continuous above with the ligament of the left vena cava, and the two structures form the remnant of the left Cuvierian duct.

In human anatomy, the systemic venous system refers to veins that drain into the right atrium without passing through two vascular beds.

Valve of inferior vena cava

The valve of the inferior vena cava is a venous valve that lies at the junction of the inferior vena cava and right atrium.

Testicular vein male gonadal vein

The testicular vein, the male gonadal vein, carries deoxygenated blood from its corresponding testis to the inferior vena cava or one of its tributaries. It is the male equivalent of the ovarian vein, and is the venous counterpart of the testicular artery.

Root of the lung

The root of the lung is located at the hilum of each lung, just above the middle of the mediastinal surface and behind the cardiac impression of the lung. It is nearer to the back than the front. The root of the lung is connected by the structures that form it to the heart and the trachea. The rib cage is separated from the lung by a two-layered membranous coating, the pleura. The hilum is the large triangular depression where the connection between the parietal pleura and the visceral pleura is made, and this marks the meeting point between the mediastinum and the pleural cavities.

A cardiac shunt is a pattern of blood flow in the heart that deviates from the normal circuit of the circulatory system. It may be described as right-left, left-right or bidirectional, or as systemic-to-pulmonary or pulmonary-to-systemic. The direction may be controlled by left and/or right heart pressure, a biological or artificial heart valve or both. The presence of a shunt may also affect left and/or right heart pressure either beneficially or detrimentally.

Venous return is the rate of blood flow back to the heart. It normally limits cardiac output.

Venae cavae large veins (venous trunks) that return deoxygenated blood from the body into the heart

The venae cavae are two large veins that return deoxygenated blood from the body into the heart. In humans there are the superior vena cava and the inferior vena cava, and both empty into the right atrium. They are located slightly off-center, toward the right side of the body.

References

This article incorporates text in the public domain from page 526 of the 20th edition of Gray's Anatomy (1918)

The public domain consists of all the creative works to which no exclusive intellectual property rights apply. Those rights may have expired, been forfeited, expressly waived, or may be inapplicable.

<i>Grays Anatomy</i> English-language textbook of human anatomy

Gray's Anatomy is an English language textbook of human anatomy originally written by Henry Gray and illustrated by Henry Vandyke Carter. Earlier editions were called Anatomy: Descriptive and Surgical, Anatomy of the Human Body and Gray's Anatomy: Descriptive and Applied, but the book's name is commonly shortened to, and later editions are titled, Gray's Anatomy. The book is widely regarded as an extremely influential work on the subject, and has continued to be revised and republished from its initial publication in 1858 to the present day. The latest edition of the book, the 41st, was published in September 2015.