Christmas Island Seamount Province

Last updated
Christmas Island Seamount Province
Heightup to 4,500 m (14,800 ft) [1]
Location
Location Indian Ocean
Geology
Type Seamount grouping
Volcanic arc/chain Hotspot volcanoes
Age of rock 47 to 136 million years old [2]
Christmas Island Seamount Province

The Christmas Island Seamount Province (also known as the Christmas Island Seamounts) is an unusual seamount (submarine volcano) formation named for Christmas Island, an Australian territory and wildlife reserve that is also part of the chain. The province consists of more than 50 seamounts, up to 4,500 m (14,800 ft) in height, within a 1,080,000 km2 (417,000 sq mi) area. [1] [2] [3]

Unlike most seamount groups, the Christmas Island seamount formation does not form a long hotspot-based chain of increasingly older volcanoes, instead being a scattered grouping of volcanoes within a large radius. The origins of the formation have long been enigmatic for scientists; the Christmas Island area does not exhibit the hotspot chain formation that most seamount groups have, nor does it run perpendicular to a local rift zone, instead lying roughly parallel to the edge of the Australian Plate. Many of the seamounts are flat-topped guyots, showing that at one point the province was likely a group of active volcanic islands, before it was slowly eroded to its current subsurface level. [2] [3]

A 2011 study acquired and tested rock samples for 40Ar/39Ar, strontium, neodymium, hafnium and lead to determine its age and origin. The study found that the rock of the seamounts was more similar to continental than oceanic crust, particularly resembling northwest Australian crust. The seamounts were found to be 47 to 136 million years old, decreasing in age from east to west, and at most 25 million years younger than the crust surrounding them. Plate reconstructions based on these dates showed that the seamounts formed where West Burma separated from Australia and India, during the breakup of Gondwana, approximately 150 million years ago. The paper proposed that the seamounts are made of recycled, delaminated continental crust enriched in mantle material that was rising beneath the mid-ocean ridge forming at the time, and that this may be a relatively common process in shallow-basin areas. [1] [2] [3]

Related Research Articles

<span class="mw-page-title-main">Seamount</span> Mountain rising from the ocean seafloor that does not reach to the waters surface

A seamount is a large submarine landform that rises from the ocean floor without reaching the water surface, and thus is not an island, islet, or cliff-rock. Seamounts are typically formed from extinct volcanoes that rise abruptly and are usually found rising from the seafloor to 1,000–4,000 m (3,300–13,100 ft) in height. They are defined by oceanographers as independent features that rise to at least 1,000 m (3,281 ft) above the seafloor, characteristically of conical form. The peaks are often found hundreds to thousands of meters below the surface, and are therefore considered to be within the deep sea. During their evolution over geologic time, the largest seamounts may reach the sea surface where wave action erodes the summit to form a flat surface. After they have subsided and sunk below the sea surface such flat-top seamounts are called "guyots" or "tablemounts".

<span class="mw-page-title-main">Mantle plume</span> Upwelling of abnormally hot rock within Earths mantle

A mantle plume is a proposed mechanism of convection within the Earth's mantle, hypothesized to explain anomalous volcanism. Because the plume head partially melts on reaching shallow depths, a plume is often invoked as the cause of volcanic hotspots, such as Hawaii or Iceland, and large igneous provinces such as the Deccan and Siberian Traps. Some such volcanic regions lie far from tectonic plate boundaries, while others represent unusually large-volume volcanism near plate boundaries.

<span class="mw-page-title-main">Large igneous province</span> Huge regional accumulation of igneous rocks

A large igneous province (LIP) is an extremely large accumulation of igneous rocks, including intrusive and extrusive, arising when magma travels through the crust towards the surface. The formation of LIPs is variously attributed to mantle plumes or to processes associated with divergent plate tectonics. The formation of some of the LIPs in the past 500 million years coincide in time with mass extinctions and rapid climatic changes, which has led to numerous hypotheses about causal relationships. LIPs are fundamentally different from any other currently active volcanoes or volcanic systems.

<span class="mw-page-title-main">Magmatism</span> Emplacement of magma on the outer layers of a terrestrial planet, which solidifies as igneous rocks

Magmatism is the emplacement of magma within and at the surface of the outer layers of a terrestrial planet, which solidifies as igneous rocks. It does so through magmatic activity or igneous activity, the production, intrusion and extrusion of magma or lava. Volcanism is the surface expression of magmatism.

<span class="mw-page-title-main">Caribbean large igneous province</span> Accumulation of igneous rocks

The Caribbean large igneous province (CLIP) consists of a major flood basalt, which created this large igneous province (LIP). It is the source of the current large eastern Pacific oceanic plateau, of which the Caribbean-Colombian oceanic plateau is the tectonized remnant. The deeper levels of the plateau have been exposed on its margins at the North and South American plates. The volcanism took place between 139 and 69 million years ago, with the majority of activity appearing to lie between 95 and 88 Ma. The plateau volume has been estimated as on the order of 4 x 106 km³. It has been linked to the Galápagos hotspot.

<span class="mw-page-title-main">Galápagos hotspot</span> Pacific volcanic hotspot

The Galápagos hotspot is a volcanic hotspot in the East Pacific Ocean responsible for the creation of the Galápagos Islands as well as three major aseismic ridge systems, Carnegie, Cocos and Malpelo which are on two tectonic plates. The hotspot is located near the Equator on the Nazca Plate not far from the divergent plate boundary with the Cocos Plate. The tectonic setting of the hotspot is complicated by the Galapagos Triple Junction of the Nazca and Cocos plates with the Pacific Plate. The movement of the plates over the hotspot is determined not solely by the spreading along the ridge but also by the relative motion between the Pacific Plate and the Cocos and Nazca Plates.

<span class="mw-page-title-main">Cobb hotspot</span>

The Cobb hotspot is a marine volcanic hotspot at, which is 460 km (290 mi) west of Oregon and Washington, North America, in the Pacific Ocean. Over geologic time, the Earth's surface has migrated with respect to the hotspot through plate tectonics, creating the Cobb–Eickelberg Seamount chain. The hotspot is currently collocated with the Juan de Fuca Ridge.

<span class="mw-page-title-main">Hawaii hotspot</span> Volcanic hotspot located near the Hawaiian Islands, in the northern Pacific Ocean

The Hawaiʻi hotspot is a volcanic hotspot located near the namesake Hawaiian Islands, in the northern Pacific Ocean. One of the best known and intensively studied hotspots in the world, the Hawaii plume is responsible for the creation of the Hawaiian–Emperor seamount chain, a 6,200-kilometer (3,900 mi) mostly undersea volcanic mountain range. Four of these volcanoes are active, two are dormant; more than 123 are extinct, most now preserved as atolls or seamounts. The chain extends from south of the island of Hawaiʻi to the edge of the Aleutian Trench, near the eastern coast of Russia.

<span class="mw-page-title-main">Manihiki Plateau</span> A large igneous province and subsurface plateau in the Pacific Ocean

The Manihiki Plateau is an oceanic plateau in the south-west Pacific Ocean. The Manihiki Plateau was formed by volcanic activity 126 to 116 million years ago during the mid-Cretaceous period at a triple junction plate boundary called the Tongareva triple junction. Initially at 125 million years ago the Manihiki Plateau formed part of the giant Ontong Java-Manihiki-Hikurangi plateau.

<span class="mw-page-title-main">Macdonald hotspot</span> Volcanic hotspot in the southern Pacific Ocean

The Macdonald hotspot is a volcanic hotspot in the southern Pacific Ocean. The hotspot was responsible for the formation of the Macdonald Seamount, and possibly the Austral-Cook Islands chain. It probably did not generate all of the volcanism in the Austral and Cook Islands as age data imply that several additional hotspots were needed to generate some volcanoes.

<span class="mw-page-title-main">Arago hotspot</span> Hotspot in the Pacific Ocean

Arago hotspot is a hotspot in the Pacific Ocean, presently located below the Arago seamount close to the island of Rurutu, French Polynesia.

<span class="mw-page-title-main">Musicians Seamounts</span> Chain of seamounts in the Pacific Ocean, north of the Hawaiian Ridge

Musicians Seamounts are a chain of seamounts in the Pacific Ocean, north of the Hawaiian Ridge. There are about 65 seamounts, some of which are named after musicians. These seamounts exist in two chains, one of which has been attributed to a probably now-extinct hotspot called the Euterpe hotspot. Others may have formed in response to plate tectonics associated with the boundary between the Pacific Plate and the former Farallon Plate.

Discovery Seamounts are a chain of seamounts in the Southern Atlantic Ocean, which include the Discovery Seamount. The seamounts lie 850 kilometres (530 mi) east of Gough Island and once rose above sea level. Various volcanic rocks as well as glacial dropstones and sediments have been dredged from the seamounts.

<span class="mw-page-title-main">Lo-En</span> Albian–Campanian guyot in the Marshall Islands in the Pacific Ocean

Lo-En or Hess is an Albian–Campanian guyot in the Marshall Islands. One among a number of seamounts in the Pacific Ocean, it was probably formed by a hotspot in what is present-day French Polynesia. Lo-En lies southeast of Eniwetok which rises above sea level, and Lo-En is almost connected to it through a ridge.

<span class="mw-page-title-main">Rarotonga hotspot</span> Volcanic hotspot in the southern Pacific Ocean

The Rarotonga hotspot is a volcanic hotspot in the southern Pacific Ocean. The hotspot is claimed to be responsible for the formation of Rarotonga and some volcanics of Aitutaki but an alternative explanation for these islands most recent volcanics has not been ruled out. Recently alternatives to hotspot activity have been offered for several other intra-plate volcanoes that may have been associated with the Rarotonga hotspot hypothesis.

Tropic Seamount is a Cretaceous seamount, part of the Canary Islands Seamount Province. It is located west of the Western Sahara's coastline and southwest of the Canary Islands, north of Cape Verde. It is one of a number of seamounts in this part of the Atlantic Ocean, probably formed by volcanic processes triggered by the proximity to the African continent. Tropic Seamount is located at a depth of 970 metres (3,180 ft) and has a summit platform with an area of 120 square kilometres (46 sq mi).

<span class="mw-page-title-main">North Arch volcanic field</span> Underwater volcanic field north of Oahu, Hawaii

<span class="mw-page-title-main">Plate theory (volcanism)</span>

The plate theory is a model of volcanism that attributes all volcanic activity on Earth, even that which appears superficially to be anomalous, to the operation of plate tectonics. According to the plate theory, the principal cause of volcanism is extension of the lithosphere. Extension of the lithosphere is a function of the lithospheric stress field. The global distribution of volcanic activity at a given time reflects the contemporaneous lithospheric stress field, and changes in the spatial and temporal distribution of volcanoes reflect changes in the stress field. The main factors governing the evolution of the stress field are:

  1. Changes in the configuration of plate boundaries.
  2. Vertical motions.
  3. Thermal contraction.

Intraplate volcanism is volcanism that takes place away from the margins of tectonic plates. Most volcanic activity takes place on plate margins, and there is broad consensus among geologists that this activity is explained well by the theory of plate tectonics. However, the origins of volcanic activity within plates remains controversial.

<span class="mw-page-title-main">Wishbone scarp</span> An ocean floor tectonic feature of the Pacific Ocean

The Wishbone scarp is a Pacific Ocean floor feature in the oceanic crust, that if it were on land would be similar to a mountain range fault system over 1,000 km (620 mi) long. It commences in the north near the Osbourn Trough although it is likely to be related tectonically to the Manihiki scarp somewhat to its north. To the south it splits into west and east scarps that have been intercepted by the Louisville hotspot with the West Wishbone scarp continuing until it intercepts the Chatham Rise. There is now evidence that the entire scarp has a fracture zone origin resolving previous uncertainty on this issue.

References

  1. 1 2 3 Crystal Gammon (20 December 2011). "Surprising Christmas Island Seamounts Mystery Solved". LiveScience through Yahoo News . Retrieved 30 December 2011.
  2. 1 2 3 4 K. Hoernle; F. Hauff; R. Werner; P. van den Bogaard; A. D. Gibbons; S. Conrad; R. D. Müller (27 November 2011). "Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere". Nature Geoscience . 4 (12): 883–887. Bibcode:2011NatGe...4..883H. CiteSeerX   10.1.1.656.2778 . doi:10.1038/ngeo1331.
  3. 1 2 3 K. Hoernle; F. Hauff; R. Werner; P. Van Den Bogaard; S. Conrad; A. Gibbons; D. Muller (27 November 2011). "Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere" (PDF). Nature Geoscience. 4 (12): 883–887. Bibcode:2011NatGe...4..883H. CiteSeerX   10.1.1.656.2778 . doi:10.1038/ngeo1331.

13°S106°E / 13°S 106°E / -13; 106