Chrysomya rufifacies

Last updated

Chrysomya rufifacies
Male Bluebottle - Chrysomya rufifacies.jpg
Male Bluebottle Chrysomya rufifacies.
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Species:
C. rufifacies
Binomial name
Chrysomya rufifacies
(Macquart, 1842)

Chrysomya rufifacies is a species belonging to the blow fly family, Calliphoridae, and is most significant in the field of forensic entomology due to its use in establishing or altering post mortem intervals. The common name for the species is the hairy maggot blow fly, and it belongs to the genus Chrysomya , which is commonly referred to as the Old World screwworms. This genus includes other species such as Chrysomya putoria and Chrysomya bezziana , which are agents of myiasis. C. rufifacies prefers very warm weather and has a relatively short lifecycle. It is widely distributed geographically and prefers to colonize large carcasses over small ones. The species commonly has a greenish metallic appearance and is important medically, economically, and forensically. [1]

Contents

Taxonomy

Chrysomya rufifacies was first described by the French entomologist Pierre-Justin-Marie Macquart. Its specific epithet is derived from the Latin words rufus 'reddish' and facies 'face'. [2] Some taxonomists believe C. rufifacies is conspecific with Chrysomya albiceps due to biological, ecological, distributional, and morphological similarities. The larvae of both species are very difficult to distinguish, and only a minor difference exists between the imagos. A prostigmatic bristle is said to be present in C. albiceps and absent in C. rufifacies, but it is not present in all C. albicepes or it is very reduced, so this character is unreliable. The status of C. rufifacies is not completely clear, and its relation to C. albiceps has not been fully determined. [3]

Description

Adult

A C. rufifacies adult, the hairy maggot blow fly Blow Fly (Chrysomya rufifacies) Sep. 2015.jpg
A C. rufifacies adult, the hairy maggot blow fly

The hairy maggot blow fly can be readily identified by examining for a shiny metallic blue-green color, a pale genal dilation, and a vestiture of the anterior thoracic spiracle that is pale in color. The mature adult is about 6–12 millimetres (0.24–0.47 in) in length. [4]

The use of a microscope allows the investigator to identify setae on the fly's meron, a greater ampulla with stiff erect setae, black first and second abdominal tergites, and a black posterior margin of the third and fourth abdominal tergites. These features are characteristic of the genus Chrysomya. The differentiation between C. megacephala and C. rufifacies is accomplished by observing the anterior thoracic spiracle color. C. rufifacies has a pale or white anterior thoracic spiracle, while C. megacephala has a dark brown or dark orange anterior thoracic spiracle. Also, C. rufifacies contains three faint pronotal (pronotum) thoracic stripes which are not readily visible. [4]

A C. rufifacies larva, the hairy maggot blow fly Chrysomya rufifacies Larva 1.JPG
A C. rufifacies larva, the hairy maggot blow fly

Larvae

The larvae of C. rufifacies are very easily identified with sharp, fleshy tubercles running down their bodies, and the mature larva is about 14 mm (0.55 in) in length with a dirty yellowish color; hence the common name, hairy maggot blow fly. The peritreme of the posterior spiracle is very wide with a narrow gap that contains forked edges; the slits are short and wide, almost filling the plate. [5]

Lifecycle

Knowledge of the lifecycle of C. rufifacies is crucial in determining the post mortem interval for applications related to medicocriminal entomology. Accurate developmental and successional data for the species can significantly aid in legal investigations. C. rufifacies is especially important in these determinations due to its highly predictable developmental time and low degree of variation in larval development. The lifecycle of C. rufifacies is characterized by holometabolous development, consisting of egg, larva, pupa, and adult stages. The entire lifecycle takes 190 to 598 hours depending on temperature. [6]

The female lays an average of 210 eggs and a recorded maximum of 368 eggs near fresh corpses and often during daylight hours. After the eggs have been laid, the first-instar larva of the insect emerges from the egg about 26 hours later at a temperature of 29 °C. A total of three larval instars are involved in the lifecycle of the species, and the entire larval development stage takes 2.5 days at a temperature of 29 °C. The larvae are capable of regulating their body temperature by moving to a different position in the maggot mass to maintain a preferred developmental temperature. The maximal preferential temperature for the larvae of C. rufifacies is 35.1 °C. The developmental time of the species is highly dependent upon temperature due to the cold-blooded nature of insects and the number of accumulated degree days. Any variability in developmental times can also be due to different rearing temperatures under different conditions such as varying humidity, rearing media, and larval density. [3]

A prepupal stage is often present and characterized by larval dispersion and migration away from the food source in search of a pupation site. The body length of the larva decreases during this stage in preparation for pupation. If the larvae are restricted from movement and not allowed to disperse during the prepupal stage, a 24-hour delay in pupation will be observed. Thus, in medicocriminal investigations, if a corpse is wrapped and causes restriction of maggot migration, altered developmental times should be considered. [6] The prepupal stage takes 1.5 days and the pupal stage takes 3 days at a temperature of 29 °C. Pupation usually occurs near the soil surface or near decaying flesh, and the skin of the larvae hardens to form a dark brown puparium or outer casing. Adults emerge after pupation and mate 3–7 days after emergence in summer, and 910 days after emergence in autumn. Adults are capable of living for 2330 days, and oviposition occurs about 5 days after mating. [3]

Importance

Medical

C. rufifacies has been used successfully in maggot therapy to treat patients with osteomyelitis, a microbial infection of the bone. [7] C. rufifacies can be a vector for enteric pathogens in countries such as India and Australia, specifically, if it enters homes due to its attraction to feces, fruits, meats, and refuse. Multiple pathogens such as Bacillus bacteria, roundworms, and pinworms have been recovered from the alimentary canal and feces of C. rufifacies. The late instars of the species are beneficial medically by acting as predators of maggots of pathogen-transmitting and myiasis-producing flies; thus, the larvae can be used as beneficial and effective biological control agents. However, certain strains from Australia, India, and Hawaii have been documented to have instars that are harmful when involved in secondary myiasis. [3]

Economic

As a widely distributed species, C. rufifacies has a profound impact on both livestock and population of other dipteran species. It is beneficial to humans due to its facultatively predatory nature, in which it consumes maggots of other species, especially competitors on necrotic tissue. [8] The species is known to control populations of Lucilia cuprina and Lucilia sericata , dipteran species that arrive first on a dead or rotten body. [9] C. rufifacies can also behave cannibalistically when no other food source is present. [7]

Although a report had been made in 1982 of a case in Hidalgo County, Texas, where myiasis had been discovered in a dog, C. rufifacies tends to primarily affect livestock. [7] In many countries, especially Australia, C. rufifacies maggots are known to cause skin and underlying tissue damage of sheep; this processes is known as "sheep strike" and results in economic loss. [9] Typically, economic damage inflicted by these maggots occurs as cutaneous myiasis on ovine livestock. Periodic oviposits on improperly cleaned newborn calves, as well as myiasis of mature cattle and sheep, have been reported in Texas and Arizona, where the fly has established resident populations. Animal myiasis caused by the species often produces large wounds that heal very slowly; however, this blow fly is not considered as a significant myiasis fly and is rarely involved in myiasis. [7] Although the economic damage inflicted by the fly is unknown, estimates depend on the quality of livestock care and the size of the fly population.

Forensic

C. rufifacies is one of the most forensically important flies because of its extremely predictable developmental time, minimal larval length difference, and low regional variation. It has a pupal developmental time ranging from 134 hours to 162 hours. The adult begins to form during the 237th to the 289th hour. [6] This is useful for the forensic entomologist in determining the time of death for a corpse. C. rufifacies could have an impact in distorting post mortem intervals by eliminating primary maggots on a corpse, due to its facultatively predatory nature during the second- and third-instar larval stages. The facultatively predatory instars feed on other dipteran larvae as alternative food sources, especially in conditions where limited food supplies exist. Even undernourished larvae can successfully pupate and become healthy adults. Further altering of the post mortem interval can occur due to cannibalism, which occurs when the second-instar larvae consume the first-instar larvae. [3]

In the southeastern, central, and southwestern part of the United States, the adult C. rufifacies is one of the first insects to arrive on a fresh corpse. The adults normally arrive within the first 10 minutes after death. The larvae also have a shorter developmental time than other species, but because of their predatory nature, they can also alter entomological-based post mortem interval estimation. [6] In Texas and Florida, the species emerges from corpses that are in an advanced stage of decomposition. [3]

Distribution

C. rufifacies can be found in a wide variety of human habitats. The fly is native to Australia and has been recently expanding greatly in distribution. Its wide distribution is due to natural dispersal and transportation through airplanes, boats, or automobiles. It occupies an altitudinal range from sea level to 1,250 m, 1,400 m, or 2,100 m. [3] The first appearance of the species in the continental United States occurred in the 1980s. The species is now established in Southern California, Arizona, Texas, Louisiana, and Florida. It is expected to eventually occupy most of the United States in the near future. [8] Due to rapid dispersion of the species, it has become the dominant blow fly on human cadavers in north and central Florida, while C. megacephala continues to be dominant in southern Florida. [6]

Future research

C. rufifacies is of primary forensic importance in the field of medicocriminal entomology and aids in establishing post mortem intervals. The species will become more significant ecologically, medically, and forensically as it displaces other native species and becomes a dominant blow fly. Future research is directed toward examining the potential effects of the widespread distribution of this species. C. rufifacies competes with the native Cochliomyia macellaria species and may cause the latter to become extinct. The fly has been successful in competing with other species in many regions of the world. This newly achieved success will require close monitoring of the species to examine its ecological effects and determine any serious involvement in myiasis. Further research in the developmental and successional behavior of the species will allow for more accurate post mortem interval calculations in the field of medicocriminal entomology. [3]

Related Research Articles

Forensic entomology application of insect and other arthropod biology to forensics

Forensic entomology is the scientific study of the invasion of the succession pattern of arthropods with their developmental stages of different species found on the decomposed cadavers during legal investigations. It is the application and study of insect and other arthropod biology to criminal matters. It also involves the application of the study of arthropods, including insects, arachnids, centipedes, millipedes, and crustaceans to criminal or legal cases. It is primarily associated with death investigations; however, it may also be used to detect drugs and poisons, determine the location of an incident, and find the presence and time of the infliction of wounds. Forensic entomology can be divided into three subfields: urban, stored-product and medico-legal/medico-criminal entomology.

Calliphoridae Family of insects in the Diptera order

The Calliphoridae are a family of insects in the order Diptera, with 1,200 known species. The maggot larvae, often used as fishing bait, are known as gentles. The family is known to be polyphyletic, but much remains disputed regarding proper treatment of the constituent taxa, some of which are occasionally accorded family status.

Common green bottle fly species of insect

The common green bottle fly is a blowfly found in most areas of the world and is the most well-known of the numerous green bottle fly species. Its body is 10–14 millimetres (0.39–0.55 in) in length – slightly larger than a house fly – and has brilliant, metallic, blue-green or golden coloration with black markings. It has short, sparse black bristles (setae) and three cross-grooves on the thorax. The wings are clear with light brown veins, and the legs and antennae are black. The larvae of the fly may be used for maggot therapy, are commonly used in forensic entomology, and can be the cause of myiasis in livestock and pets.

<i>Chrysomya putoria</i> species of insect

Chrysomya putoria, also known as the tropical African latrine blowfly, is a fly species belonging to the blowfly family, Calliphoridae.C. putoria is native to Africa and has recently spread to the Americas. These flies pose significant health risks, especially due to their close association with human settlements. Adult flies can carry pathogens, while larvae may cause myiasis by growing and feeding on the flesh of domestic animals and humans. Other myiasis-causing flies in the same genus are C. bezziana and C. megacephala. C. putoria and other flies that feed on decomposing tissue are used as important tools in forensic entomology to establish the post-mortem interval, or the time elapsed since death.

<i>Cynomya mortuorum</i> species of insect

Cynomya mortuorum belongs to the order Diptera, sometimes referred to as "true flies". In English, the only common name occasionally used is "fly of the dead". It has a bluish-green appearance, similar to other Calliphoridae and is found in multiple geographic locations with a preference for colder regions. Belonging to the family Calliphoridae, it has been shown to have forensically relevant implications due to its appearance on carrion. Current research is being done to determine C. mortuorum's level of importance and usage within forensic entomology.

<i>Chrysomya</i> genus of insects

Chrysomya is an Old World blow fly genus of the family Calliphoridae. The genus Chrysomya contains a number of species including Chrysomya rufifacies and Chrysomya megacephala. The term “Old World blow fly” is a derivative of both the associated family, Calliphoridae, and the belief that the genus Chrysomya originated in Asia and migrated to North America only relatively recently. Chrysomya’s primary importance to the field of medico-criminal forensic entomology is due to the genus’ reliable life cycle, allowing investigators to accurately develop a postmortem interval. Chrysomya adults are typically metallic colored with thick setae on the meron and plumose arista.

<i>Cochliomyia</i> Genus of insects

Cochliomyia is a genus in the family Calliphoridae, known as blowflies, in the order Diptera. Cochliomyia is commonly referred to as the New World screwworm flies, as distinct from Old World screwworm flies. Four species are in this genus: C. macellaria, C. hominivorax, C. aldrichi, and C. minima. C. hominivorax is known as the primary screwworm because its larvae produce myiasis and feed on living tissue. This feeding causes deep, pocket-like lesions in the skin, which can be very damaging to the animal host. C. macellaria is known as the secondary screwworm because its larvae produce myiasis, but feed only on necrotic tissue. Both C. hominivorax and C. macellaria thrive in warm, tropical areas.

<i>Lucilia illustris</i> species of insect

Lucilia illustris is a member of the fly family Calliphoridae, commonly known as a blow fly. Along with several other species, L. illustris is commonly referred to as the green bottle fly. L. illustris is typically 6–9 mm in length and has a metallic blue-green thorax. The larvae develop in three instars, each with unique developmental properties. The adult fly typically will feed on flowers, but the females need some sort of carrion protein in order to breed and lay eggs.

<i>Calliphora vicina</i> species of insect

Calliphora vicina is a member of the family Calliphoridae, which includes blow flies and bottle flies. These flies are important in the field of forensic entomology, being used to estimate the time of a person's death when a corpse is found and then examined. C. vicina is currently one of the most entomologically important fly species for this purpose because it arrives at and colonizes a body following death in consistent timeframes.

<i>Phormia regina</i> species of insect

The species Phormia regina , more commonly known as the black blow fly, belongs to the blow fly family Calliphoridae and was first described by Johann Wilhelm Meigen.

<i>Chrysomya albiceps</i> species of insect

Chrysomya albiceps is a species belonging to the blow fly family, Calliphoridae.

<i>Chrysomya megacephala</i> species of insect

Chrysomya megacephala, more commonly known as the oriental latrine fly, is a member of the family Calliphoridae (blowflies). It is a warm-weather fly with a greenish-blue metallic box-like body. The fly infests corpses soon after death, making it important to forensic science. This fly is implicated in some public health issues; it can cause accidental myiasis, and also infects fish and livestock.

<i>Chrysomya bezziana</i> species of insect

Chrysomya bezziana, also known as the Old World screwworm fly or screwworm, is an obligate parasite of mammals. Obligate parasitic flies require a host to complete their development. Named to honor the Italian entomologist Mario Bezzi, this fly is widely distributed in Asia, tropical Africa, India, and Papua New Guinea. The adult can be identified as metallic green or blue with a yellow face and the larvae are smooth, lacking any obvious body processes except on the last segment.

Compsomyiops callipes, previously known as Paraluclia wheeleri, is a member of the blowfly family Calliphoridae. It is a warm weather fly that can be found in southwestern parts of the United States and parts of South America. This species can be identified by its chaeotaxy, metallic blue color, club-shaped palp, and brown calypters.

Cynomya cadaverina, also known as the shiny blue bottle fly, is a member of the family Calliphoridae, which includes blow flies as well as bottle flies. In recent years, this family has become a forensically important facet in many medicocriminal investigations in the growing field of forensic entomology. C. cadaverina is specifically important in determining a post-mortem interval, as well as other important factors.

<i>Synthesiomyia nudiseta</i> species of insect

Synthesiomyia nudiseta is one of the largest flies in the family Muscidae. The fly has a pair of forewings; the paired hind wings have been reduced to halteres that help with stability and movement during flight. Key characteristics of this species include plumose segmented aristae, well-developed calypters, and sternopleural bristles. Synthesiomyia nudiseta is a forensically important species because it is necrophilous and can therefore help determine the time of colonization for the post mortem interval with its known life cycle.

<i>Calliphora livida</i> species of insect

Calliphora livida is a member of the family Calliphoridae, the blow flies. This large family includes the genus Calliphora, the "blue bottle flies". This genus is important in the field of forensic entomology because of its value in post-mortem interval estimation.

<i>Lucilia coeruleiviridis</i> species of insect

Lucilia coeruleiviridis, formerly Phaenecia coeruleiviridis, is commonly known as the green bottle fly, because of its metallic blue-green thorax and abdomen. L. coeruleiviridis was first discovered by French entomologist Pierre-Justin-Marie Macquart in 1855. It belongs to the family Calliphoridae and is one of many forensically important Diptera, as it is often found on decaying substances. L. coeruleiviridis is one of the most ubiquitous blow fly species in the southeastern United States, particularly in the spring and fall months.

<i>Protophormia terraenovae</i> species of insect

Protophormia terraenovae is commonly called northern blowfly, blue-bottle fly or blue-assed fly. It is distinguished by its deep blue coloration and large size and is an important species throughout the northern hemisphere. This fly is notable for its economic effect as a myiasis pest of livestock and its antibiotic benefits in maggot therapy. Also of interest is P. terraenovae’s importance in forensic investigations: because of their temperature-dependent development and their prominent presence on corpses, the larvae of this species are useful in minimum post-mortem interval (mPMI) determination.

Calliphora loewi is part of the family Calliphoridae, bottle flies and blowflies, and in the genus Calliphora, blue bottle flies. The genus can be deceiving since C. loewi is not blue. Though this species is rare, it can play an important part in forensic entomology, spreading disease, and decomposing carrion. The life cycle of C. loewi is similar to the life cycle of the genus Calliphora. Since this species is rare there has not been very much research done with this species.

References

  1. "Decomposition: Green Hairy Maggot Blowfly". Australian Museum Online. Archived from the original on 2008-02-06. Retrieved 2008-03-24.
  2. Simpson DP (1979). Cassell's Latin Dictionary (5 ed.). London: Cassell Ltd. p. 883. ISBN   0-304-52257-0.
  3. 1 2 3 4 5 6 7 8 Baumgartner D. L. Review of Chrysomya rufifacies (Diptera: Calliphoridae). J. Med. Entomol. 1993. 30:338–352.
  4. 1 2 Whitworth, Terry. "Keys to the Genera and Species of Blow Flies (Dipter:Calliphoridae) of America North of Mexico."Proc. Entomol. Soc. Wash. 108(3). 2006.
  5. Richardson, Betty T. "The Genus CHRYSOMYA Robineau-Desvoidy."Workers in Subjects Pertaining to Agriculture in Land-Grant Colleges and Experiment Stations. Miscellaneous Publication No. 625. 1947.
  6. 1 2 3 4 5 Byrd JH, Butler JF. 1996. Effects of temperature on Chrysomya rufifacies (Diptera: Calliphoridae) development. Journal of Medical Entomology 34: 353-358.
  7. 1 2 3 4 Bram RA, George JE (2000). "Introduction of nonindigenous arthropod pests of animals". J. Med. Entomol. 37 (1): 1–8. doi:10.1603/0022-2585-37.1.1. PMID   15218899.
  8. 1 2 Byrd, Jason H. (1998). "Hairy Maggot Blow Fly". University of Florida . Retrieved 2008-03-24.
  9. 1 2 Byrd, Jason H. (2005-08-02). "Hairy Maggot Blow Fly". Pests and Diseases Image Library. Archived from the original on 2008-05-09. Retrieved 2008-03-24.