Coenzyme M

Last updated
Coenzyme M
Coenzyme M (CoM).svg
Coenzyme M 3D BS.png
Names
IUPAC name
2-Sulfanylethanesulfonate
Systematic IUPAC name
2-Sulfanylethanesulfonate
Other names
2-mercaptoethylsulfonate; 2-mercaptoethanesulfonate; coenzyme M anion; H-S-CoM; AC1L1HCY; 2-sulfanylethane-1-sulfonate; CTK8A8912
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
  • InChI=1S/C2H6O3S2/c3-7(4,5)2-1-6/h6H,1-2H2,(H,3,4,5)/p-1 Yes check.svgY
    Key: ZNEWHQLOPFWXOF-UHFFFAOYSA-M Yes check.svgY
  • [O-]S(=O)(=O)CCS
Properties
C2H5O3S2
Molar mass 141.18 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Coenzyme M is a coenzyme required for methyl-transfer reactions in the metabolism of archaeal methanogens, [1] [2] and in the metabolism of other substrates in bacteria. [3] It is also a necessary cofactor in the metabolic pathway of alkene-oxidizing bacteria. CoM helps eliminate the toxic epoxides formed from the oxidation of alkenes such as propylene. [4] The structure of this coenzyme was discovered by CD Taylor and RS Wolfe in 1974 while they were studying methanogenesis, the process by which carbon dioxide is transformed into methane in some archaea. [5] The coenzyme is an anion with the formula HSCH
2
CH
2
SO
3
. It is named 2-mercaptoethanesulfonate and abbreviated HS–CoM. The cation is unimportant, but the sodium salt is most available. Mercaptoethanesulfonate contains both a thiol, which is the main site of reactivity, and a sulfonate group, which confers solubility in aqueous media.

Contents

Biochemical role

Methanogenesis

The coenzyme is the C1 donor in methanogenesis. It is converted to methyl-coenzyme M thioether, the thioether CH
3
SCH
2
CH
2
SO
3
, in the penultimate step to methane formation. [6] Methyl-coenzyme M reacts with coenzyme B, 7-thioheptanoylthreoninephosphate, to give a heterodisulfide, releasing methane:

CH3–S–CoM + HS–CoB → CH4 + CoB–S–S–CoM

This induction is catalyzed by the enzyme methyl-coenzyme M reductase, which restricts cofactor F430 as the prosthetic group.

CH3-S-CoM is produced by the MtaA-catalyzed reaction between a methylated version of monomethylamine corrinoid protein MtmC and HS-CoM. The methylated version of MtmC is in turn produced by a cobamide-dependent methyltransferase that uses trimethylamine (TMA), dimethylamine (DMA), or monomethylamine (MMA) as the mehyl donor. [7]

Alkene metabolism

Coenzyme M is also used to make acetoacetate from CO2 and propylene or ethylene in aerobic bacteria. Specifically, in bacteria that oxidize alkenes into epoxides. After the propylene (or other alkene) undergoes epoxidation and becomes epoxypropane it becomes electrophilic and toxic. These epoxides react with DNA and proteins, affecting cell function. Alkene-oxidizing bacteria like Xanthobacter autotrophicus [4] use a metabolic pathway in which CoM is conjugated with an aliphatic epoxide. This step creates a nucleophilic compound which can react with CO2. The eventual carboxylation produces acetoacetate, breaking down the propylene. [4]

Biosynthesis

Bacteria and archaea use different synthetic routes, albeit both starting with phosphoenolpyruvate. [8]

See also

References

  1. Balch WE, Wolfe RS (1979). "Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid)". J. Bacteriol. 137 (1): 256–63. doi:10.1128/JB.137.1.256-263.1979. PMC   218444 . PMID   104960.
  2. Taylor CD, Wolfe RS (10 August 1974). "Structure and methylation of coenzyme M(HSCH
    2
    CH
    2
    SO
    3
    )"
    . J. Biol. Chem. 249 (15): 4879–85. doi: 10.1016/S0021-9258(19)42403-4 . PMID   4367810.
  3. Partovi, Sarah E.; Mus, Florence; Gutknecht, Andrew E.; Martinez, Hunter A.; Tripet, Brian P.; Lange, Bernd Markus; DuBois, Jennifer L.; Peters, John W. (2018-04-06). "Coenzyme M biosynthesis in bacteria involves phosphate elimination by a functionally distinct member of the aspartase/fumarase superfamily". The Journal of Biological Chemistry. 293 (14): 5236–5246. doi: 10.1074/jbc.RA117.001234 . ISSN   1083-351X. PMC   5892593 . PMID   29414784.
  4. 1 2 3 Krishnakumar, Arathi M.; Sliwa, Darius; Endrizzi, James A.; Boyd, Eric S.; Ensign, Scott A.; Peters, John W. (September 2008). "Getting a Handle on the Role of Coenzyme M in Alkene Metabolism". Microbiology and Molecular Biology Reviews. 72 (3): 445–456. doi:10.1128/MMBR.00005-08. ISSN   1092-2172. PMC   2546864 . PMID   18772284.
  5. Parry, Ronald J. (1999-01-01), Barton, Sir Derek; Nakanishi, Koji; Meth-Cohn, Otto (eds.), "1.29 - Biosynthesis of Sulfur-containing Natural Products" , Comprehensive Natural Products Chemistry, Oxford: Pergamon, pp. 825–863, doi:10.1016/b978-0-08-091283-7.00031-x, ISBN   978-0-08-091283-7 , retrieved 2022-05-10
  6. Thauer, Rudolf K. (1998-09-01). "Biochemistry of methanogenesis: a tribute to Marjory Stephenson:1998 Marjory Stephenson Prize Lecture". Microbiology. 144 (9): 2377–2406. doi: 10.1099/00221287-144-9-2377 . ISSN   1350-0872. PMID   9782487.
  7. Ferguson, Tsuneo; Soares, Jitesh A.; Lienard, Tanja; Gottschalk, Gerhard; Krzycki, Joseph A. (January 2009). "RamA, a Protein Required for Reductive Activation of Corrinoid-dependent Methylamine Methyltransferase Reactions in Methanogenic Archaea". Journal of Biological Chemistry. 284 (4): 2285–2295. doi: 10.1074/jbc.M807392200 . PMC   2629093 . PMID   19043046.
  8. Wu, Hsin-Hua; Pun, Michael D.; Wise, Courtney E.; Streit, Bennett R.; Mus, Florence; Berim, Anna; Kincannon, William M.; Islam, Abdullah; Partovi, Sarah E.; Gang, David R.; DuBois, Jennifer L.; Lubner, Carolyn E.; Berkman, Clifford E.; Lange, B. Markus; Peters, John W. (6 September 2022). "The pathway for coenzyme M biosynthesis in bacteria". Proceedings of the National Academy of Sciences. 119 (36). Bibcode:2022PNAS..11907190W. doi: 10.1073/pnas.2207190119 . PMC   9457059 .