Comparison of Chernobyl and other radioactivity releases

Last updated

This article compares the radioactivity release and decay from the Chernobyl disaster with various other events which involved a release of uncontrolled radioactivity.

Contents

Chernobyl compared to background radiation

The external relative gamma dose for a person in the open near the Chernobyl disaster site. The intermediate-lived fission products like Cs-137 contribute nearly all of the gamma dose now after a number of decades have passed, see opposite. Totalexternaldoseratecher.png
The external relative gamma dose for a person in the open near the Chernobyl disaster site. The intermediate-lived fission products like Cs-137 contribute nearly all of the gamma dose now after a number of decades have passed, see opposite.
The relative contributions of the major nuclides to the radioactive contamination of the air after the accident. Drawn using data from the OECD report and the second edition of 'The radiochemical manual'. AirDoseChernobylVector.svg
The relative contributions of the major nuclides to the radioactive contamination of the air after the accident. Drawn using data from the OECD report and the second edition of 'The radiochemical manual'.

Natural sources of radiation are prevalent in the environment, and come from cosmic rays, food sources (bananas have a particularly high source due to potassium-40 but all foods contain carbon and thereby carbon-14), radon gas, granite and other dense rocks, and others. The banana equivalent dose is sometimes used in science communication to visualize different levels of ionizing radiation. The collective radiation background dose for natural sources in Europe is about 500,000 man-Sieverts per year. The total dose from Chernobyl is estimated at 80,000 man-sieverts, or roughly 1/6 as much. [1] However, some individuals, particularly in areas adjacent the reactor, received massively higher doses.

Chernobyl's radiation was detectable across Western Europe. Average doses received ranged from 0.02 mrem (Portugal) to 38 mrem (portions of Germany). [1]

Chernobyl compared with an atomic bomb

Far fewer people died as an immediate result of the Chernobyl event than the immediate deaths from radiation at Hiroshima. Chernobyl is eventually predicted to result in up to 4,000 total deaths from cancer, sometime in the future, according to the WHO and create around 41,000 excess cancer according to the International Journal of Cancer, with, depending on treatment, not all cancers resulting in death. [2] [3] Due to the differences in half-life, the different radioactive fission products undergo exponential decay at different rates. Hence the isotopic signature of an event where more than one radioisotope is involved will change with time.

"Compared with other nuclear events: The Chernobyl explosion put 400 times more radioactive material into the Earth's atmosphere than the atomic bomb dropped on Hiroshima; atomic weapons tests conducted in the 1950s and 1960s all together are estimated to have put some 100 to 1,000 times more radioactive material into the atmosphere than the Chernobyl accident." [4]

The radioactivity released at Chernobyl tended to be more long-lived than that released by a bomb detonation hence it is not possible to draw a simple comparison between the two events. Also, a dose of radiation spread over many years (as is the case with Chernobyl) is much less harmful than the same dose received over a short period.

The relative size of the Chernobyl release when compared with the release due to a hypothetical ground burst of a bomb similar to the Fat Man device dropped on Nagasaki.

IsotopeRatio between the release due to the Fat Man bomb and the Chernobyl accident
90Sr1:87
137Cs1:890
131I1:25
133Xe1:31

A comparison of the gamma dose rates due to the Chernobyl accident and the hypothetical nuclear weapon.

Normalized to the same Cs-137 level. (logarithmic scale). Chernobylvsbombfallout.png
Normalized to the same Cs-137 level. (logarithmic scale).
Normalized to the same dose rate for day one. Relativedoseratesnormalisedforday1.png
Normalized to the same dose rate for day one.
Normalized to the same Cs-137 level (dose rate on day 10000). Relativedoseratesnormalisedforday10000.png
Normalized to the same Cs-137 level (dose rate on day 10000).

The graph of dose rate as a function of time for the bomb fallout was created using a method similar to that of T. Imanaka, S. Fukutani, M. Yamamoto, A. Sakaguchi and M. Hoshi, J. Radiation Research, 2006, 47, Suppl A121-A127. The graph exhibits the same shape as that obtained in the paper. The bomb fallout graph is for a ground burst of an implosion-based plutonium bomb which has a depleted uranium tamper. The fission was assumed to have been caused by 1 MeV neutrons and 20% occurred in the 238U tamper of the bomb. It was assumed, for the sake of simplicity, that no plume separation of the isotopes occurred between the detonation and the deposit of radioactivity. The following gamma-emitting isotopes are modeled 131I, 133I, 132Te, 133I, 135I, 140Ba, 95Zr, 97Zr, 99Mo, 99mTc, 103Ru, 105Ru, 106Ru, 142La, 143Ce, 137Cs, 91Y, 91Sr, 92Sr, 128Sb, and 129Sb. The graph ignores the effects of beta emission and shielding. The data for the isotopes was obtained from the Korean table of the isotopes. The graphs for the Chernobyl accident were computed by an analogous method. Note that in the event of a low altitude or ground burst nuclear detonation that fractionation of the volatile and non volatile radionuclides occurs. Also during the Chernobyl accident, the ratio between the different elements released by the accident changed as a function of time. [5]

A ground burst of a nuclear weapon creates considerably more local deposited fallout than the air bursts used at Hiroshima or Nagasaki. This is due in part to neutron activation of ground soil and greater amounts of soil being sucked into the nuclear fireball in a ground burst than in a high air burst. In the above, neutron activation is neglected, and only the fission product fraction of the total activity resulting from the ground burst is shown.

Chernobyl compared with Tomsk-7

The release of radioactivity which occurred at Tomsk-7 (an industrial nuclear complex located in Seversk rather than the city of Tomsk) in 1993, is another comparison with the Chernobyl release. During reprocessing activities, some of the feed for the second cycle (medium active part) of the PUREX process escaped in an accident involving red oil. According to the IAEA it was estimated that the following isotopes were released from the reaction vessel: [6]

Normalized to the same first day dose rate. (logarithmic scale). Chernobylvstomsk.png
Normalized to the same first day dose rate. (logarithmic scale).

The very short-lived isotopes such as 140Ba and 131I were absent from this mixture, and the long-lived 137Cs was at a small concentration. This is because it is not able to enter the tributyl phosphate/hydrocarbon organic phase used in the first liquid-liquid extraction cycle of the PUREX process. The second cycle is normally to clean up the uranium and plutonium product. In the PUREX process, some zirconium, technetium, and other elements are extracted by the tributyl phosphate. Due to the radiation induced degradation of tributyl phosphate, the first cycle organic phase is always contaminated with ruthenium (later extracted by dibutyl hydrogen phosphate). Because the very short-lived radioisotopes and the relatively long-lived caesium isotopes are either absent or in low concentrations, the shape of the dose rate vs. time graph is different from Chernobyl, both for short times and long times after the accident.

The size of the radioactive release at Tomsk-7 was much smaller, and while it caused moderate environmental contamination, it did not cause any early deaths.

Chernobyl compared to Fukushima Daiichi

Normalized to the same first day dose rate. (logarithmic scale). Chernobylvsru106.png
Normalized to the same first day dose rate. (logarithmic scale).

Chernobyl compared with the Goiânia accident

While both events released 137Cs, the isotopic signature for the Goiânia accident was much simpler. [7] It was a single isotope which has a half-life of about 30 years. To show how the activity vs. time graph for a single isotope differs from the dose rate due to Chernobyl (in the open air), the adjacent chart is shown with calculated data for a hypothetical release of 106Ru.

Chernobyl compared with the Three Mile Island accident

Three Mile Island-2 was an accident of a completely different type from Chernobyl. However, both accidents have vague similarities.

Chernobyl was a design flaw-caused power excursion causing a steam explosion resulting in a graphite fire, uncontained, which lofted radioactive smoke high into the atmosphere; TMI was a slow, undetected leak – caused by the technical malfunction of a pilot-operated relief valve – which lowered the water level around the nuclear fuel, resulting in over a third of it shattering when refilled rapidly with coolant.

Similar to Chernobyl, operator error played a role but did not directly cause the accident. Both accidents had grueling and costly cleanup efforts. Chernobyl and TMI's unaffected reactors were restarted and continued operation until 2000 and 2019, respectively.

Unlike Chernobyl, TMI-2's reactor vessel did not fail and contained almost all of the radioactive material. Containment at TMI was not breached. On the day of the accident, a small "hydrogen burn" occurred inside the reactor building, but it was not enough to affect normal operation of the reactor.

Following the accident, an estimated 44,000 curies of radioactive gases – particularly Krypton-85 – from the leak were vented into the atmosphere through specially designed filters under operator control. A government report concluded that the accident caused no increase in cancer rates for local residents. [8]

Chernobyl compared with criticality accidents

During the time between the start of the Manhattan project and the present day, a series of accidents have occurred in which nuclear criticality has played a central role. The criticality accidents may be divided into two classes. For more details see nuclear and radiation accidents. A review of the topic was published in 2000, "A Review of Criticality Accidents" by Los Alamos National Laboratory (Report LA-13638), May 2000. Coverage includes United States, Russia, United Kingdom, and Japan. Also available at this page, which also tries to track down documents referenced in the report.

Process accidents

In the first class (process accidents) during the processing of fissile material, accidents have occurred when a critical mass has been created by accident. For instance at Charlestown, Rhode Island, United States, on July 24, 1964, one death occurred. At Tokaimura, Japan, nuclear fuel reprocessing plant, on September 30, 1999, [9] two deaths and one non fatal overexposure occurred as result of accidents where too much fissile matter was placed in a vessel. Radioactivity was released as a result of the Tokaimura accident. The building in which the accident occurred was not designed as a containment building, yet it was able to retard the spread of radioactivity. Because the temperature rise in the nuclear reaction vessel was small, the majority of the fission products remained in the vessel.

These accidents tend to lead to very high doses due to direct irradiation of the workers within the site, but due to the inverse square law the dose suffered by members of the general public tends to be very small. Also very little environmental contamination normally occurs as a result of these accidents.

Reactor accidents

In this type of accident a reactor or other critical assembly releases far more fission power than was expected, or it becomes critical at the wrong moment in time. The series of examples of such events include one in an experimental facility in Buenos Aires, Argentina, on September 23, 1983 (one death), [10] and during the Manhattan Project several people were irradiated (two, Harry Daghlian and Louis Slotin, were irradiated fatally) during "tickling the dragon's tail" experiments. These accidents tend to lead to very high doses due to direct irradiation of the workers within the site, but due to the inverse square law the dose suffered by members of the general public tends to be very small. Also, very little environmental contamination normally occurs as a result of these accidents. For instance, at Sarov the radioactivity remained confined to within the actinide metal objects which were part of the experimental system, according to the IAEA report (2001). [11] Even the SL-1 accident (RIA, power surge in an experimental nuclear reactor in Idaho, 1961) failed to release much radioactivity outside the building in which it occurred.

See also

Related Research Articles

<span class="mw-page-title-main">Nuclear fallout</span> Residual radioactive material following a nuclear blast

Nuclear fallout is residual radioactive material propelled into the upper atmosphere following a nuclear blast, so called because it "falls out" of the sky after the explosion and the shock wave has passed. It commonly refers to the radioactive dust and ash created when a nuclear weapon explodes. The amount and spread of fallout is a product of the size of the weapon and the altitude at which it is detonated. Fallout may get entrained with the products of a pyrocumulus cloud and when combined with precipitation falls as black rain, which occurred within 30–40 minutes of the atomic bombings of Hiroshima and Nagasaki. This radioactive dust, usually consisting of fission products mixed with bystanding atoms that are neutron-activated by exposure, is a form of radioactive contamination.

<span class="mw-page-title-main">Nuclear technology</span> Technology that involves the reactions of atomic nuclei

Nuclear technology is technology that involves the nuclear reactions of atomic nuclei. Among the notable nuclear technologies are nuclear reactors, nuclear medicine and nuclear weapons. It is also used, among other things, in smoke detectors and gun sights.

<span class="mw-page-title-main">Nuclear fuel cycle</span> Process of manufacturing and consuming nuclear fuel

The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.

<span class="mw-page-title-main">Nuclear chemistry</span> Branch of chemistry dealing with radioactivity, transmutation and other nuclear processes

Nuclear chemistry is the sub-field of chemistry dealing with radioactivity, nuclear processes, and transformations in the nuclei of atoms, such as nuclear transmutation and nuclear properties.

<span class="mw-page-title-main">Nuclear and radiation accidents and incidents</span> Severe disruptive events involving fissile or fusile materials

A nuclear and radiation accident is defined by the International Atomic Energy Agency (IAEA) as "an event that has led to significant consequences to people, the environment or the facility." Examples include lethal effects to individuals, large radioactivity release to the environment, or a reactor core melt. The prime example of a "major nuclear accident" is one in which a reactor core is damaged and significant amounts of radioactive isotopes are released, such as in the Chernobyl disaster in 1986 and Fukushima nuclear disaster in 2011.

<span class="mw-page-title-main">Radioactive contamination</span> Undesirable radioactive elements on surfaces or in gases, liquids, or solids

Radioactive contamination, also called radiological pollution, is the deposition of, or presence of radioactive substances on surfaces or within solids, liquids, or gases, where their presence is unintended or undesirable.

<span class="mw-page-title-main">Nuclear fission product</span> Atoms or particles produced by nuclear fission

Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release of heat energy, and gamma rays. The two smaller nuclei are the fission products..

<span class="mw-page-title-main">Mayak</span> Nuclear reprocessing plant in Russia

The Mayak Production Association is one of the largest nuclear facilities in the Russian Federation, housing a reprocessing plant. The closest settlements are Ozyorsk to the northwest and Novogornyi to the south.

<span class="mw-page-title-main">Neutron activation</span> Induction of radioactivity by neutron radiation

Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emitting gamma rays, or particles such as beta particles, alpha particles, fission products, and neutrons. Thus, the process of neutron capture, even after any intermediate decay, often results in the formation of an unstable activation product. Such radioactive nuclei can exhibit half-lives ranging from small fractions of a second to many years.

<span class="mw-page-title-main">Isotopes of iodine</span>

There are 40 known isotopes of iodine (53I) from 108I to 147I; all undergo radioactive decay except 127I, which is stable. Iodine is thus a monoisotopic element.

<span class="mw-page-title-main">Chernobyl disaster</span> 1986 nuclear accident in the Soviet Union

The Chernobyl disaster began on 26 April 1986 with the explosion of the No. 4 reactor of the Chernobyl Nuclear Power Plant near the city of Pripyat in northern Ukraine, near the Belarus border in the Soviet Union. It is one of only two nuclear energy accidents rated at the maximum severity on the International Nuclear Event Scale, the other being the 2011 Fukushima nuclear accident. The response involved more than 500,000 personnel and cost an estimated 18 billion roubles. It remains the worst nuclear disaster in history, and the costliest disaster in human history, with an estimated cost of $700 billion USD.

<span class="mw-page-title-main">Caesium-137</span> Radioactive isotope of caesium

Caesium-137, cesium-137 (US), or radiocaesium, is a radioactive isotope of caesium that is formed as one of the more common fission products by the nuclear fission of uranium-235 and other fissionable isotopes in nuclear reactors and nuclear weapons. Trace quantities also originate from spontaneous fission of uranium-238. It is among the most problematic of the short-to-medium-lifetime fission products. Caesium-137 has a relatively low boiling point of 671 °C (1,240 °F) and easily becomes volatile when released suddenly at high temperature, as in the case of the Chernobyl nuclear accident and with atomic explosions, and can travel very long distances in the air. After being deposited onto the soil as radioactive fallout, it moves and spreads easily in the environment because of the high water solubility of caesium's most common chemical compounds, which are salts. Caesium-137 was discovered by Glenn T. Seaborg and Margaret Melhase.

<span class="mw-page-title-main">Effects of the Chernobyl disaster</span> Assessment of Chernobyls impact on Earth since 1986

The Chernobyl disaster of 26 April 1986 triggered the release of radioactive contamination into the atmosphere in the form of both particulate and gaseous radioisotopes. As of 2024, it remains the world's largest known release of radioactivity into the natural environment.

<span class="mw-page-title-main">Nuclear safety and security</span> Regulations for uses of radioactive materials

Nuclear safety is defined by the International Atomic Energy Agency (IAEA) as "The achievement of proper operating conditions, prevention of accidents or mitigation of accident consequences, resulting in protection of workers, the public and the environment from undue radiation hazards". The IAEA defines nuclear security as "The prevention and detection of and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear materials, other radioactive substances or their associated facilities".

<span class="mw-page-title-main">Fission products (by element)</span> Breakdown of nuclear fission results

This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium. The isotopes are listed by element, in order by atomic number.

<span class="mw-page-title-main">Environmental radioactivity</span> Radioactivity naturally present within the Earth

Environmental radioactivity is part of the overall background radiation and is produced by radioactive materials in the human environment. While some radioisotopes, such as strontium-90 (90Sr) and technetium-99 (99Tc), are only found on Earth as a result of human activity, and some, like potassium-40 (40K), are only present due to natural processes, a few isotopes, such as tritium (3H), result from both natural processes and human activities. The concentration and location of some natural isotopes, particularly uranium-238 (238U), can be affected by human activity, such as nuclear weapons testing, which caused a global fallout, with up to 2.4 million deaths by 2020.

This page describes how uranium dioxide nuclear fuel behaves during both normal nuclear reactor operation and under reactor accident conditions, such as overheating. Work in this area is often very expensive to conduct, and so has often been performed on a collaborative basis between groups of countries, usually under the aegis of the Organisation for Economic Co-operation and Development's Committee on the Safety of Nuclear Installations (CSNI).

<span class="mw-page-title-main">Strontium-90</span> Radioactive isotope of strontium

Strontium-90 is a radioactive isotope of strontium produced by nuclear fission, with a half-life of 28.8 years. It undergoes β decay into yttrium-90, with a decay energy of 0.546 MeV. Strontium-90 has applications in medicine and industry and is an isotope of concern in fallout from nuclear weapons, nuclear weapons testing, and nuclear accidents.

K-431 was a Soviet nuclear-powered submarine that had a reactor accident on 10 August 1985. It was commissioned on 30 September 1965. The 1985 explosion occurred during refueling of the submarine at Chazhma Bay, Dunay, Vladivostok. There were ten fatalities and 49 other people suffered radiation injuries. Time magazine has identified the accident as one of the world's "worst nuclear disasters".

Long-lived fission products (LLFPs) are radioactive materials with a long half-life produced by nuclear fission of uranium and plutonium. Because of their persistent radiotoxicity, it is necessary to isolate them from humans and the biosphere and to confine them in nuclear waste repositories for geological periods of time. The focus of this article is radioisotopes (radionuclides) generated by fission reactors.

References

  1. 1 2 "Chernobyl – Limited health impacts". The Environmentalist. 7 (2). Springer: 144. 1987-06-01. doi:10.1007/BF02240299. S2CID   189914132.
  2. Health effects of the Chernobyl accident: an overview.
  3. Cardis, Elisabeth (2006). "Estimates of the cancer burden in Europe from radioactive fallout from the Chernobyl accident". International Journal of Cancer. 119 (6): 1224–1235. doi:10.1002/ijc.22037. PMID   16628547.
  4. This is written in page 8(9) of "Ten years after Chernobyl: What do we really know?" of the PDF official document: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/28/058/28058918.pdf.
  5. Foreman, Mark; St. John, Russell (2015). "An introduction to serious nuclear accident chemistry". Cogent Chemistry. 1. doi: 10.1080/23312009.2015.1049111 .
  6. The Radiological Accident in the Reprocessing Plant at Tomsk – IAEA Publications.
  7. "IAEA Publications – Details". www-pub.iaea.org. Retrieved 2024-05-24.
  8. "Three Mile Island". Washingtonpost.com. 1990-09-01. Retrieved 2014-02-04.
  9. World Nuclear Association Archived 2006-09-23 at the Wayback Machine .
  10. "Information Notice No. 83-66, Supplement 1: Fatality at Argentine Critical Facility". NRC Web. Retrieved 2024-05-24.
  11. The criticality accident in Sarov.