Congenital athymia

Last updated

Congenital athymia
Human thymus posterior view.jpg
Human thymus, posterior view.
Specialty Immunology, Medical genetics

Congenital athymia is an extremely rare disorder marked by the absence of the thymus at birth. [1] T cell maturation and selection depend on the thymus, and newborns born without a thymus experience severe immunodeficiency. [2] A significant T cell deficiency, recurrent infections, susceptibility to opportunistic infections, and a tendency to develop autologous graft-versus-host disease (GVHD) or, in the case of complete DiGeorge syndrome, a "atypical" phenotype are characteristics of congenital athymia. [3] [4]

Contents

Signs and symptoms

Congenital athymia's clinical symptoms are directly related to the thymus's absence and its incapacity to generate T cells with the necessary immune capabilities. An increased vulnerability to bacterial, viral, and fungal infections results from T-cell immunodeficiency. [1]

These patients have an especially high incidence of pneumonias. M. bovis and the respiratory syncytial virus have been linked to additional cases of severe pulmonary infections. This group is also prone to gastrointestinal infections, such as those caused by the rotavirus, norovirus, enterovirus, M. bovis, and C. difficile viruses. Diarrhea, malabsorption, and failure to thrive can result from these infections. Although gastrointestinal and lung infections are the most frequently reported infection types, congenital athymia patients can present with a wide range of other infection types. There have been reports of infections of the head, ears, nose, and throat, including meningitis, sinusitis, mastoiditis, and thrush, as well as infections of the urinary tract caused by K. pnuemoniae, E. faecium, and echovirus. [5] [6] [7]

T cells may expand extrathymic oligoclonally in congenital athymia. These cells can infiltrate organs and result in autologous graft-versus-host disease, but they confer little to no protective immunity. Individuals who have an expansion of oligoclonal T cells usually have an eczematous rash and accompanying lymphadenopathy. T cell infiltration can result in enteropathy and transaminitis in the gastrointestinal tract. [8]

Congenital athymia patients also have other autoimmune-mediated manifestations, such as autoimmune thyroiditis, hypothyroidism, and Coombs-positive hemolytic anemia. [7] [6] [5]

Causes

Congenital athymia is linked to a number of genetic disorders, congenital syndromes, and environmental variables. Genetic abnormalities that are either (1) specific to thymic development or (2) related to the development of the midline region as a whole can cause congenital athymia. [1]

Risk factors

Congenital athymia is linked to multiple environmental etiologies. Affected fetal thymus size and other congenital anomalies like renal agenesis and butterfly vertebrae are linked to diabetic embryopathy. [9] It has been shown that babies of diabetic mothers have thymic aplasia. [10] Retinoic acid exposure during fetal development is also linked to phenotypes associated with DiGeorge syndrome, such as hypoplasia and thymic developmental abnormalities such as aplasia and ectopia. [11]

Genetics

The most well-known gene associated with thymic development is Forkhead Box N1 (FOXN1). As a member of the transcription factor family known as the forkhead box gene family, FOXN1 plays a role in the growth and differentiation of skin epithelial cells as well as the development, differentiation, and maintenance of thymic epithelial cells during embryonic and postnatal life. [12] [13] [14]

The transcription factors known as the paired box family, which control tissue differentiation, includes Paired Box 1 (PAX1). [15] Numerous studies have reported on patients with autosomal recessive otofaciocervical syndrome type 2 (OTFCS2) and mutations in PAX1. Because of altered thymus development, OTFCS2 is associated with a syndromic form of SCID. [16] [17]

The two most common genetic syndromes linked to thymus development defects are 22q11.2 deletion syndrome and CHARGE syndrome. Patients with these syndromes exhibit a variety of symptoms because the genes TBX1 and CHD7, associated with these disorders, play a role in the development of the entire midline region. [1] Additional genes that may be involved in healthy thymus development are FOXI3 and TBX2. [18] [19]

Treatment

In October 2021, the thymus tissue product Rethymic was approved by U.S. Food and Drug Administration (FDA) as a medical therapy for the treatment of children with congenital athymia. [20] It takes six months or longer to reconstitute the immune function in treated children. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Thymus</span> Endocrine gland

The thymus is a specialized primary lymphoid organ of the immune system. Within the thymus, thymus cell lymphocytes or T cells mature. T cells are critical to the adaptive immune system, where the body adapts to specific foreign invaders. The thymus is located in the upper front part of the chest, in the anterior superior mediastinum, behind the sternum, and in front of the heart. It is made up of two lobes, each consisting of a central medulla and an outer cortex, surrounded by a capsule.

<span class="mw-page-title-main">Graft-versus-host disease</span> Medical condition

Graft-versus-host disease (GvHD) is a syndrome, characterized by inflammation in different organs. GvHD is commonly associated with bone marrow transplants and stem cell transplants.

Immunodeficiency, also known as immunocompromisation, is a state in which the immune system's ability to fight infectious diseases and cancer is compromised or entirely absent. Most cases are acquired ("secondary") due to extrinsic factors that affect the patient's immune system. Examples of these extrinsic factors include HIV infection and environmental factors, such as nutrition. Immunocompromisation may also be due to genetic diseases/flaws such as SCID.

<span class="mw-page-title-main">Hypereosinophilic syndrome</span> Unexplained chronic eosinophila

Hypereosinophilic syndrome is a disease characterized by a persistently elevated eosinophil count in the blood for at least six months without any recognizable cause, with involvement of either the heart, nervous system, or bone marrow.

The regulatory T cells (Tregs or Treg cells), formerly known as suppressor T cells, are a subpopulation of T cells that modulate the immune system, maintain tolerance to self-antigens, and prevent autoimmune disease. Treg cells are immunosuppressive and generally suppress or downregulate induction and proliferation of effector T cells. Treg cells express the biomarkers CD4, FOXP3, and CD25 and are thought to be derived from the same lineage as naïve CD4+ cells. Because effector T cells also express CD4 and CD25, Treg cells are very difficult to effectively discern from effector CD4+, making them difficult to study. Research has found that the cytokine transforming growth factor beta (TGF-β) is essential for Treg cells to differentiate from naïve CD4+ cells and is important in maintaining Treg cell homeostasis.

<span class="mw-page-title-main">Wiskott–Aldrich syndrome</span> Medical condition

Wiskott–Aldrich syndrome (WAS) is a rare X-linked recessive disease characterized by eczema, thrombocytopenia, immune deficiency, and bloody diarrhea. It is also sometimes called the eczema-thrombocytopenia-immunodeficiency syndrome in keeping with Aldrich's original description in 1954. The WAS-related disorders of X-linked thrombocytopenia (XLT) and X-linked congenital neutropenia (XLN) may present with similar but less severe symptoms and are caused by mutations of the same gene.

<span class="mw-page-title-main">FOXP3</span> Immune response protein

FOXP3, also known as scurfin, is a protein involved in immune system responses. A member of the FOX protein family, FOXP3 appears to function as a master regulator of the regulatory pathway in the development and function of regulatory T cells. Regulatory T cells generally turn the immune response down. In cancer, an excess of regulatory T cell activity can prevent the immune system from destroying cancer cells. In autoimmune disease, a deficiency of regulatory T cell activity can allow other autoimmune cells to attack the body's own tissues.

Aplasia is a birth defect where an organ or tissue is wholly or largely absent. It is caused by a defect in a developmental process.

<span class="mw-page-title-main">X-linked severe combined immunodeficiency</span> Medical condition

X-linked severe combined immunodeficiency (X-SCID) is an immunodeficiency disorder in which the body produces very few T cells and NK cells.

<span class="mw-page-title-main">Nezelof syndrome</span> Medical condition

Nezelof syndrome is an autosomal recessive congenital immunodeficiency condition due to underdevelopment of the thymus. The defect is a type of purine nucleoside phosphorylase deficiency with inactive phosphorylase, this results in an accumulation of deoxy-GTP which inhibits ribonucleotide reductase. Ribonucleotide reductase catalyzes the formation of deoxyribonucleotides from ribonucleotides, thus, DNA replication is inhibited.

A thymocyte is an immune cell present in the thymus, before it undergoes transformation into a T cell. Thymocytes are produced as stem cells in the bone marrow and reach the thymus via the blood.

<span class="mw-page-title-main">FOXN1</span> Protein-coding gene in the species Homo sapiens

Forkhead box protein N1 is a protein that in humans is encoded by the FOXN1 gene.

Congenital hypoplastic anemia is a congenital disorder that occasionally also includes leukopenia and thrombocytopenia and is characterized by deficiencies of red cell precursors.

Thymic involution is the shrinking (involution) of the thymus with age, resulting in changes in the architecture of the thymus and a decrease in tissue mass. Thymus involution is one of the major characteristics of vertebrate immunology, and occurs in almost all vertebrates, from birds, teleosts, amphibians to reptiles, though the thymi of a few species of sharks are known not to involute. This process is genetically regulated, with the nucleic material responsible being an example of a conserved sequence — one maintained through natural selection since it arose in a common ancestor of all species now exhibiting it, via a phenomenon known to bioinformaticists as an orthologic sequence homology.

Thymus transplantation is a form of organ transplantation where the thymus is moved from one body to another. It is used in certain immunodeficiencies, such as DiGeorge Syndrome.

Allogeneic processed thymus tissue, sold under the brand name Rethymic, is a thymus tissue medical therapy used for the treatment of children with congenital athymia. It takes six months or longer to reconstitute the immune function in treated people.

Thymoproteasome is a special kind of proteasome, which is present in vertebrates. In the body it is located in thymus, exclusively in cortical thymic epithelial cells (cTECs). But in thymus we can also find another type of specific proteasome, immunoproteasome, which is present in thymocytes, dendritic cells and medular thymic epithelial cells. It was first described in 2007 during a search for non-intronic sequence proximal to PSMB5 locus in mouse genome. The PSMB5 locus encodes the standard β5 proteasome subunit, while this sequence encodes a variant subunit β5t (PSMB11) specific to thymoproteasome. The importance of this protein complex is its involvement in positive selection of T cells.

Thymus stromal cells are subsets of specialized cells located in different areas of the thymus. They include all non-T-lineage cells, such as thymic epithelial cells (TECs), endothelial cells, mesenchymal cells, dendritic cells, and B lymphocytes, and provide signals essential for thymocyte development and the homeostasis of the thymic stroma.

<span class="mw-page-title-main">Otofaciocervical syndrome</span> Medical condition

Otofaciocervical syndrome, also known as Fara Chlupackova syndrome, are a small group of rare developmental disorders of genetic origin which are characterized by facial dysmorphisms, long neck, preauricular and/or branchial pits, cervical muscle hypoplasia, hearing loss, and mild intellectual disabilities. Additional findings include vertebral anomalies and short stature.

<span class="mw-page-title-main">DiGeorge syndrome</span> Medical condition caused by chromosomal abnormality

DiGeorge syndrome, also known as 22q11.2 deletion syndrome, is a syndrome caused by a microdeletion on the long arm of chromosome 22. While the symptoms can vary, they often include congenital heart problems, specific facial features, frequent infections, developmental disability, intellectual disability and cleft palate. Associated conditions include kidney problems, schizophrenia, hearing loss and autoimmune disorders such as rheumatoid arthritis or Graves' disease.

References

  1. 1 2 3 4 Collins, Cathleen; Sharpe, Emily; Silber, Abigail; Kulke, Sarah; Hsieh, Elena W. Y. (13 May 2021). "Congenital Athymia: Genetic Etiologies, Clinical Manifestations, Diagnosis, and Treatment". Journal of Clinical Immunology. 41 (5). Springer Science and Business Media LLC: 881–895. doi:10.1007/s10875-021-01059-7. ISSN   0271-9142. PMC   8249278 .
  2. Markert, M.Louise; Hummell, Donna S.; Rosenblatt, Howard M.; Schiff, Sherrie E.; Harville, Terry O.; Williams, Larry W.; Schiff, Richard I.; Buckley, Rebecca H. (1998). "Complete DiGeorge syndrome: Persistence of profound immunodeficiency". The Journal of Pediatrics. 132 (1). Elsevier BV: 15–21. doi:10.1016/s0022-3476(98)70478-0. ISSN   0022-3476. PMID   9469994.
  3. Markert, M. Louise; Devlin, Blythe H.; Alexieff, Marilyn J.; Li, Jie; McCarthy, Elizabeth A.; Gupton, Stephanie E.; Chinn, Ivan K.; Hale, Laura P.; Kepler, Thomas B.; He, Min; Sarzotti, Marcella; Skinner, Michael A.; Rice, Henry E.; Hoehner, Jeffrey C. (6 February 2007). "Review of 54 patients with complete DiGeorge anomaly enrolled in protocols for thymus transplantation: outcome of 44 consecutive transplants". Blood. 109 (10). American Society of Hematology: 4539–4547. doi:10.1182/blood-2006-10-048652. ISSN   0006-4971. PMC   1885498 . PMID   17284531.
  4. Markert, M. Louise; Marques, José G.; Neven, Bénédicte; Devlin, Blythe H.; McCarthy, Elizabeth A.; Chinn, Ivan K.; Albuquerque, Adriana S.; Silva, Susana L.; Pignata, Claudio; de Saint Basile, Geneviève; Victorino, Rui M.; Picard, Capucine; Debre, Marianne; Mahlaoui, Nizar; Fischer, Alain; Sousa, Ana E. (13 January 2011). "First use of thymus transplantation therapy for FOXN1 deficiency (nude/SCID): a report of 2 cases". Blood. 117 (2). American Society of Hematology: 688–696. doi:10.1182/blood-2010-06-292490. ISSN   0006-4971. PMC   3031487 .
  5. 1 2 Janda, Ales; Sedlacek, Petr; Hönig, Manfred; Friedrich, Wilhelm; Champagne, Martin; Matsumoto, Tadashi; Fischer, Alain; Neven, Benedicte; Contet, Audrey; Bensoussan, Danielle; Bordigoni, Pierre; Loeb, David; Savage, William; Jabado, Nada; Bonilla, Francisco A.; Slatter, Mary A.; Davies, E. Graham; Gennery, Andrew R. (30 September 2010). "Multicenter survey on the outcome of transplantation of hematopoietic cells in patients with the complete form of DiGeorge anomaly". Blood. 116 (13). American Society of Hematology: 2229–2236. doi:10.1182/blood-2010-03-275966. ISSN   0006-4971. PMC   4425440 . PMID   20530285.
  6. 1 2 Markert, M. Louise; Alexieff, Marilyn J.; Li, Jie; Sarzotti, Marcella; Ozaki, Daniel A.; Devlin, Blythe H.; Sedlak, Debra A.; Sempowski, Gregory D.; Hale, Laura P.; Rice, Henry E.; Mahaffey, Samuel M.; Skinner, Michael A. (15 October 2004). "Postnatal thymus transplantation with immunosuppression as treatment for DiGeorge syndrome". Blood. 104 (8). American Society of Hematology: 2574–2581. doi:10.1182/blood-2003-08-2984. ISSN   0006-4971. PMID   15100156.
  7. 1 2 Davies, E. Graham; Cheung, Melissa; Gilmour, Kimberly; Maimaris, Jesmeen; Curry, Joe; Furmanski, Anna; Sebire, Neil; Halliday, Neil; Mengrelis, Konstantinos; Adams, Stuart; Bernatoniene, Jolanta; Bremner, Ronald; Browning, Michael; Devlin, Blythe; Erichsen, Hans Christian; Gaspar, H. Bobby; Hutchison, Lizzie; Ip, Winnie; Ifversen, Marianne; Leahy, T. Ronan; McCarthy, Elizabeth; Moshous, Despina; Neuling, Kim; Pac, Malgorzata; Papadopol, Alina; Parsley, Kathryn L.; Poliani, Luigi; Ricciardelli, Ida; Sansom, David M.; Voor, Tiia; Worth, Austen; Crompton, Tessa; Markert, M. Louise; Thrasher, Adrian J. (2017). "Thymus transplantation for complete DiGeorge syndrome: European experience". Journal of Allergy and Clinical Immunology. 140 (6). Elsevier BV: 1660–1670.e16. doi:10.1016/j.jaci.2017.03.020. hdl: 10547/622087 . ISSN   0091-6749. PMID   28400115.
  8. Markert, M. Louise; Devlin, Blythe H.; Chinn, Ivan K.; McCarthy, Elizabeth A. (9 December 2008). "Thymus transplantation in complete DiGeorge anomaly". Immunologic Research. 44 (1–3). Springer Science and Business Media LLC: 61–70. doi:10.1007/s12026-008-8082-5. ISSN   0257-277X. PMC   4951183 . PMID   19066739.
  9. Dörnemann, Ria; Koch, Raphael; Möllmann, Ute; Falkenberg, Maria Karina; Möllers, Mareike; Klockenbusch, Walter; Schmitz, Ralf (1 January 2017). "Fetal thymus size in pregnant women with diabetic diseases". Journal of Perinatal Medicine. 45 (5). Walter de Gruyter GmbH: 595–601. doi:10.1515/jpm-2016-0400. ISSN   1619-3997. PMID   28195554. S2CID   4920690.
  10. Wang, Raymond; Martínez-Frías, Maria Luísa; Graham, John M. (2002). "Infants of diabetic mothers are at increased risk for the oculo-auriculo-vertebral sequence: A case-based and case-control approach". The Journal of Pediatrics. 141 (5). Elsevier BV: 611–617. doi:10.1067/mpd.2002.128891. ISSN   0022-3476. PMID   12410187.
  11. Coberly, S; Lammer, E; Alashari, M (1996). "Retinoic acid embryopathy: case report and review of literature". Pediatric Pathology & Laboratory Medicine. 16 (5): 823–836. PMID   9025880.
  12. Blackburn, C C; Augustine, C L; Li, R; Harvey, R P; Malin, M A; Boyd, R L; Miller, J F; Morahan, G (11 June 1996). "The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors". Proceedings of the National Academy of Sciences. 93 (12): 5742–5746. Bibcode:1996PNAS...93.5742B. doi: 10.1073/pnas.93.12.5742 . ISSN   0027-8424. PMC   39131 . PMID   8650163.
  13. Cheng, Lili; Guo, Jianfei; Sun, Liguang; Fu, Jian; Barnes, Peter F.; Metzger, Daniel; Chambon, Pierre; Oshima, Robert G.; Amagai, Takashi; Su, Dong-Ming (2010). "Postnatal Tissue-specific Disruption of Transcription Factor FoxN1 Triggers Acute Thymic Atrophy". Journal of Biological Chemistry. 285 (8). Elsevier BV: 5836–5847. doi: 10.1074/jbc.m109.072124 . ISSN   0021-9258. PMC   2820809 . PMID   19955175.
  14. Žuklys, Saulius; Handel, Adam; Zhanybekova, Saule; Govani, Fatima; Keller, Marcel; Maio, Stefano; Mayer, Carlos E; Teh, Hong Ying; Hafen, Katrin; Gallone, Giuseppe; Barthlott, Thomas; Ponting, Chris P; Holländer, Georg A (22 August 2016). "Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells". Nature Immunology. 17 (10). Springer Science and Business Media LLC: 1206–1215. doi:10.1038/ni.3537. ISSN   1529-2908. PMC   5033077 . PMID   27548434.
  15. Wallin, Johan; Eibel, Hermann; Neubüser, Annette; Wilting, Jörg; Koseki, Haruhiko; Balling, Rudi (1 January 1996). "Pax1 is expressed during development of the thymus epithelium and is required for normal T-cell maturation". Development. 122 (1). The Company of Biologists: 23–30. doi:10.1242/dev.122.1.23. ISSN   0950-1991. PMID   8565834.
  16. Paganini, I.; Sestini, R.; Capone, G.L.; Putignano, A.L.; Contini, E.; Giotti, I.; Gensini, F.; Marozza, A.; Barilaro, A.; Porfirio, B.; Papi, L. (24 October 2017). "A novel <scp>PAX1</scp> null homozygous mutation in autosomal recessive otofaciocervical syndrome associated with severe combined immunodeficiency". Clinical Genetics. 92 (6). Wiley: 664–668. doi:10.1111/cge.13085. ISSN   0009-9163. PMID   28657137. S2CID   33417887.
  17. Yamazaki, Yasuhiro; Urrutia, Raul; Franco, Luis M.; Giliani, Silvia; Zhang, Kejian; Alazami, Anas M.; Dobbs, A. Kerry; Masneri, Stefania; Joshi, Avni; Otaizo-Carrasquero, Francisco; Myers, Timothy G.; Ganesan, Sundar; Bondioni, Maria Pia; Ho, Mai Lan; Marks, Catherine; Alajlan, Huda; Mohammed, Reem W.; Zou, Fanggeng; Valencia, C. Alexander; Filipovich, Alexandra H.; Facchetti, Fabio; Boisson, Bertrand; Azzari, Chiara; Al-Saud, Bander K.; Al-Mousa, Hamoud; Casanova, Jean Laurent; Abraham, Roshini S.; Notarangelo, Luigi D. (14 February 2020). "PAX1 is essential for development and function of the human thymus". Science Immunology. 5 (44). American Association for the Advancement of Science (AAAS). doi:10.1126/sciimmunol.aax1036. ISSN   2470-9468. PMC   7189207 . PMID   32111619.
  18. Liu, Ning; Schoch, Kelly; Luo, Xi; Pena, Loren D M; Bhavana, Venkata Hemanjani; Kukolich, Mary K; Stringer, Sarah; Powis, Zöe; Radtke, Kelly; Mroske, Cameron; Deak, Kristen L; McDonald, Marie T; McConkie-Rosell, Allyn; Markert, M Louise; Kranz, Peter G; Stong, Nicholas; Need, Anna C; Bick, David; Amaral, Michelle D; Worthey, Elizabeth A; Levy, Shawn; Wangler, Michael F; Bellen, Hugo J; Shashi, Vandana; Yamamoto, Shinya (2 May 2018). "Functional variants in TBX2 are associated with a syndromic cardiovascular and skeletal developmental disorder". Human Molecular Genetics. 27 (14). Oxford University Press (OUP): 2454–2465. doi:10.1093/hmg/ddy146. ISSN   0964-6906. PMC   6030957 . PMID   29726930.
  19. Bernstock, Joshua D.; Totten, Arthur H.; Elkahloun, Abdel G.; Johnson, Kory R.; Hurst, Anna C.; Goldman, Frederick; Groves, Andrew K.; Mikhail, Fady M.; Atkinson, T. Prescott (2020). "Recurrent microdeletions at chromosome 2p11.2 are associated with thymic hypoplasia and features resembling DiGeorge syndrome". Journal of Allergy and Clinical Immunology. 145 (1). Elsevier BV: 358–367.e2. doi:10.1016/j.jaci.2019.09.020. ISSN   0091-6749. PMC   6949372 . PMID   31600545.
  20. 1 2 "FDA Approves Innovative Treatment for Pediatric Patients with Congenital Athymia". U.S. Food and Drug Administration (FDA) (Press release). 8 October 2021. Retrieved 8 October 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .

PD-icon.svg This article incorporates public domain material from the United States Department of Health and Human Services

Further reading