Continuous-wave radar

Last updated
Cw radar.png
transmitted
energy
backscattered energy,
containing much information
about the backscatterer
Cw radar.png
Principle of a measurement with a continuous-wave radar

Continuous-wave radar (CW radar) is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. [1] Individual objects can be detected using the Doppler effect, which causes the received signal to have a different frequency from the transmitted signal, allowing it to be detected by filtering out the transmitted frequency.

Contents

Doppler-analysis of radar returns can allow the filtering out of slow or non-moving objects, thus offering immunity to interference from large stationary objects and slow-moving clutter. [2] [3] This makes it particularly useful for looking for objects against a background reflector, for instance, allowing a high-flying aircraft to look for aircraft flying at low altitudes against the background of the surface. Because the very strong reflection off the surface can be filtered out, the much smaller reflection from a target can still be seen.

CW radar systems are used at both ends of the range spectrum.

Operation

The main advantage of CW radar is that energy is not pulsed so these are much simpler to manufacture and operate. They have no minimum or maximum range, although the broadcast power level imposes a practical limit on range. Continuous-wave radar maximize total power on a target because the transmitter is broadcasting continuously.

The military uses continuous-wave radar to guide semi-active radar homing (SARH) air-to-air missiles, such as the U.S. AIM-7 Sparrow and the Standard missile family. The launch aircraft illuminates the target with a CW radar signal, and the missile homes in on the reflected radio waves. Since the missile is moving at high velocities relative to the aircraft, there is a strong Doppler shift. Most modern air combat radars, even pulse Doppler sets, have a CW function for missile guidance purposes.

Maximum distance in a continuous-wave radar is determined by the overall bandwidth and transmitter power. This bandwidth is determined by two factors.

Doubling transmit power increases distance performance by about 20%. Reducing the total FM transmit noise by half has the same effect.

Frequency domain receivers used for continuous-wave Doppler radar receivers are very different from conventional radar receivers. The receiver consists of a bank of filters, usually more than 100. The number of filters determines the maximum distance performance.

Doubling the number of receiver filters increases distance performance by about 20%. Maximum distance performance is achieved when receiver filter size is equal to the maximum FM noise riding on the transmit signal. Reducing receiver filter size below average amount of FM transmit noise will not improve range performance.

A CW radar is said to be matched when the receiver filter size matches the RMS bandwidth of the FM noise on the transmit signal.

Types

There are two types of continuous-wave radar: unmodulated continuous-wave and modulated continuous-wave.

Unmodulated continuous-wave

Change of wavelength caused by motion of the source Doppler effect diagrammatic.png
Change of wavelength caused by motion of the source

This kind of radar can cost less than $10 (2021). Return frequencies are shifted away from the transmitted frequency based on the Doppler effect when objects are moving. There is no way to evaluate distance. This type of radar is typically used with competition sports, like golf, tennis, baseball, NASCAR racing, and some smart-home appliances including light-bulbs and motion sensors.

The Doppler frequency change depends on the speed of light in the air (c’ ≈ c/1.0003 is slightly slower than in vacuum) and v the speed of the target: [4]

The Doppler frequency is thus: [5]

Since the usual variation of targets' speed of a radar is much smaller than , it is possible to simplify with  :

Continuous-wave radar without frequency modulation (FM) only detects moving targets, as stationary targets (along the line of sight) will not cause a Doppler shift. Reflected signals from stationary and slow-moving objects are masked by the transmit signal, which overwhelms reflections from slow-moving objects during normal operation.

Modulated continuous-wave

Frequency-modulated continuous-wave radar (FM-CW) – also called continuous-wave frequency-modulated (CWFM) radar [6] – is a short-range measuring radar set capable of determining distance. This increases reliability by providing distance measurement along with speed measurement, which is essential when there is more than one source of reflection arriving at the radar antenna. This kind of radar is often used as "radar altimeter" to measure the exact height during the landing procedure of aircraft. [7] It is also used as early-warning radar, wave radar, and proximity sensors. Doppler shift is not always required for detection when FM is used. While early implementations, such as the APN-1 Radar Altimeter of the 1940s, were designed for short ranges, Over The Horizon Radars (OTHR) such as the Jindalee Operational Radar Network (JORN) are designed to survey intercontinental distances of some thousands of kilometres.

In this system the transmitted signal of a known stable frequency continuous wave varies up and down in frequency over a fixed period of time by a modulating signal. Frequency difference between the receive signal and the transmit signal increases with delay, and hence with distance. This smears out, or blurs, the Doppler signal. Echoes from a target are then mixed with the transmitted signal to produce a beat signal which will give the distance of the target after demodulation.

A variety of modulations are possible, the transmitter frequency can slew up and down as follows :

Range demodulation is limited to 1/4 wavelength of the transmit modulation. Instrumented range for 100 Hz FM would be 500 km. That limit depends upon the type of modulation and demodulation. The following generally applies.

The radar will report incorrect distance for reflections from distances beyond the instrumented range, such as from the moon. FMCW range measurements are only reliable to about 60% of the instrumented range, or about 300 km for 100 Hz FM.

Sawtooth frequency modulation

Ranging with an FM-CW radar system: if the error caused by a possible Doppler frequency
f
D
{\displaystyle f_{D}}
can be ignored and the transmitter's power is linearly frequency modulated, then the time delay (
D
t
{\displaystyle \Delta t}
) is proportional to the difference of the transmitted and the received signal (
D
f
{\displaystyle \Delta f}
) at any time. Fmcw prinziple.png
Ranging with an FM-CW radar system: if the error caused by a possible Doppler frequency can be ignored and the transmitter's power is linearly frequency modulated, then the time delay () is proportional to the difference of the transmitted and the received signal () at any time.

Sawtooth modulation is the most used in FM-CW radars where range is desired for objects that lack rotating parts. Range information is mixed with the Doppler velocity using this technique. Modulation can be turned off on alternate scans to identify velocity using unmodulated carrier frequency shift. This allows range and velocity to be found with one radar set. Triangle wave modulation can be used to achieve the same goal.

As shown in the figure the received waveform (green) is simply a delayed replica of the transmitted waveform (red). The transmitted frequency is used to down-convert the receive signal to baseband, and the amount of frequency shift between the transmit signal and the reflected signal increases with time delay (distance). The time delay is thus a measure of the range; a small frequency spread is produced by nearby reflections, a larger frequency spread corresponds with more time delay and a longer range.

With the advent of modern electronics, digital signal processing is used for most detection processing. The beat signals are passed through an analog-to-digital converter, and digital processing is performed on the result. As explained in the literature, FM-CW ranging for a linear ramp waveform is given in the following set of equations: [7]

where is the radar frequency sweep amount and is the time to complete the frequency sweep.

Then, , rearrange to a more useful:

, where is the round trip time of the radar energy.

It is then a trivial matter to calculate the physical one-way distance for an idealized typical case as:

where is the speed of light in any transparent medium of refractive index n (n=1 in vacuum and 1.0003 for air).

For practical reasons, receive samples are not processed for a brief period after the modulation ramp begins because incoming reflections will have modulation from the previous modulation cycle. This imposes a range limit and limits performance.

Sinusoidal frequency modulation

Sinusoidal FM modulation identifies range by measuring the amount of spectrum spread produced by propagation delay (AM is not used with FMCW). Amfm3-en-de.gif
Sinusoidal FM modulation identifies range by measuring the amount of spectrum spread produced by propagation delay (AM is not used with FMCW).

Sinusoidal FM is used when both range and velocity are required simultaneously for complex objects with multiple moving parts like turbine fan blades, helicopter blades, or propellers. This processing reduces the effect of complex spectra modulation produced by rotating parts that introduce errors into range measurement process.

This technique also has the advantage that the receiver never needs to stop processing incoming signals because the modulation waveform is continuous with no impulse modulation.

Sinusoidal FM is eliminated by the receiver for close in reflections because the transmit frequency will be the same as the frequency being reflected back into the receiver. The spectrum for more distant objects will contain more modulation. The amount of spectrum spreading caused by modulation riding on the receive signal is proportional to the distance to the reflecting object.

The time domain formula for FM is:

where (modulation index)

A time delay is introduced in transit between the radar and the reflector.

where time delay

The detection process down converts the receive signal using the transmit signal. This eliminates the carrier.

The Carson bandwidth rule can be seen in this equation, and that is a close approximation to identify the amount of spread placed on the receive spectrum:

Receiver demodulation is used with FMCW similar to the receiver demodulation strategy used with pulse compression. This takes place before Doppler CFAR detection processing. A large modulation index is needed for practical reasons.

Practical systems introduce reverse FM on the receive signal using digital signal processing before the fast Fourier transform process is used to produce the spectrum. This is repeated with several different demodulation values. Range is found by identifying the receive spectrum where width is minimum.

Practical systems also process receive samples for several cycles of the FM in order to reduce the influence of sampling artifacts.

Configurations

Block diagram of a simple continuous-wave radar module: Many manufacturers offer such transceiver modules and rename them as "Doppler radar sensors" Bsp2 CW-Radar.EN.png
Block diagram of a simple continuous-wave radar module: Many manufacturers offer such transceiver modules and rename them as "Doppler radar sensors"

There are two different antenna configurations used with continuous-wave radar: monostatic radar , and bistatic radar .

Monostatic

The radar receive antenna is located nearby the radar transmit antenna in monostatic radar.

Feed-through null is typically required to eliminate bleed-through between the transmitter and receiver to increase sensitivity in practical systems. This is typically used with continuous-wave angle tracking (CWAT) radar receivers that are interoperable with surface-to-air missile systems.

Interrupted continuous-wave can be used to eliminate bleed-through between the transmit and receive antenna. This kind of system typically takes one sample between each pair of transmit pulses, and the sample rate is typically 30 kHz or more. This technique is used with the least expensive kinds of radar, such as those used for traffic monitoring and sports.

FM-CW radars can be built with one antenna using either a circulator, or circular polarization.

Bistatic

The radar receive antenna is located far from the radar transmit antenna in bistatic radar. The transmitter is fairly expensive, while the receiver is fairly inexpensive and disposable.

This is typically used with semi-active radar homing including most surface-to-air missile systems. The transmit radar is typically located near the missile launcher. The receiver is located in the missile.

The transmit antenna illuminates the target in much the same way as a search light. The transmit antenna also issues an omnidirectional sample.

The receiver uses two antennas one antenna aimed at the target and one antenna aimed at the transmit antenna. The receive antenna that is aimed at the transmit antenna is used to develop the feed-through null, which allows the target receiver to operate reliably in or near the main beam of the antenna.

The bistatic FM-CW receiver and transmitter pair may also take the form of an over-the-air deramping (OTAD) system. An OTAD transmitter broadcasts an FM-CW signal on two different frequency channels; one for synchronisation of the receiver with the transmitter, the other for illuminating the measurement scene. Using directive antennas, the OTAD receiver collects both signals simultaneously and mixes the synchronisation signal with the downconverted echo signal from the measurement scene in a process known as over-the-air deramping. The frequency of deramped signal is proportional to the bistatic range to the target less the baseline distance between the OTAD transmitter and the OTAD receiver. [8]

Most modern systems FM-CW radars use one transmitter antenna and multiple receiver antennas. Because the transmitter is on continuously at effectively the same frequency as the receiver, special care must be exercised to avoid overloading the receiver stages.

Monopulse

Monopulse antennas produce angular measurements without pulses or other modulation. This technique is used in semi-active radar homing.

Leakage

The transmit signal will leak into the receiver on practical systems. Significant leakage will come from nearby environmental reflections even if antenna components are perfect. As much as 120 dB of leakage rejection is required to achieve acceptable performance.

Three approaches can be used to produce a practical system that will function correctly.

Null and filter approaches must be used with bistatic radar, like semi-active radar homing, for practical reasons because side-lobes from the illumination radar will illuminate the environment in addition to the main-lobe illumination on the target. Similar constraints apply to ground-based CW radar. This adds cost.

Interruption applies to cheap hand held mono-static radar systems (police radar and sporting goods). This is impractical for bistatic systems because of the cost and complexity associated with coordinating time with nuclear precision in two different locations.

The design constraint that drives this requirement is the dynamic range limitation of practical receiver components that include band pass filters that take time to settle out.

Null

The null approach takes two signals:

  • A sample of the transmit signal leaking into the receiver
  • A sample of the actual transmit signal

The actual transmit signal is rotated 180 degrees, attenuated, and fed into the receiver. The phase shift and attenuation are set using feedback obtained from the receiver to cancel most of the leakage. Typical improvement is on the order of 30 dB to 70 dB.

Filter

The filter approach relies on using a very narrow band reject filter that will eliminate low velocity signals from nearby reflectors. The band reject area spans 10 mile per hour to 100 mile per hour depending upon the anticipated environment. Typical improvement is on the order of 30 dB to 70 dB.

Interruption, FMICW

While interrupted carrier systems are not considered to be CW systems, performance characteristics are sufficiently similar to group interrupted CW systems with pure CW radar because the pulse rate is high enough that range measurements cannot be done without frequency modulation (FM).

This technique turns the transmitter off for a period before receiver sampling begins. Receiver interference declines by about 8.7 dB per time constant. Leakage reduction of 120 dB requires 14 recover bandwidth time constants between when the transmitter is turned off and receiver sampling begins.

The interruption concept is widely used, especially in long-range radar applications where the receiver sensitivity is very important. It is commonly known as "frequency modulated interrupted continuous wave", or FMICW.

Advantages

Because of simplicity, CW radar are inexpensive to manufacture, relatively free from failure, cheap to maintain, and fully automated. Some are small enough to carry in a pocket. More sophisticated CW radar systems can reliably achieve accurate detections exceeding 100 km distance while providing missile illumination.

The FMCW ramp can be compressed providing extra signal to noise gains such one does not need the extra power that pulse radar using a no FM modulation would. This combined with the fact that it is coherent means that Fourier integration can be used rather than azimuth integration providing superior signal to noise and a Doppler measurement.

Doppler processing allows signal integration between successive receiver samples. This means that the number of samples can be increased to extend the detection range without increasing transmit power. That technique can be used to produce inexpensive stealthy low-power radar.

CW performance is similar to Pulse-Doppler radar performance for this reason.

Limitations

Unmodulated continuous wave radar cannot measure distance. Signal amplitude provides the only way to determine which object corresponds with which speed measurement when there is more than one moving object near the receiver, but amplitude information is not useful without range measurement to evaluate target size. Moving objects include birds flying near objects in front of the antenna. Reflections from small objects directly in front of the receiver can be overwhelmed by reflections entering antenna side-lobes from large object located to the side, above, or behind the radar, such as trees with wind blowing through the leaves, tall grass, sea surface, freight trains, busses, trucks, and aircraft.

Small radar systems that lack range modulation are only reliable when used with one object in a sterile environment free from vegetation, aircraft, birds, weather phenomenon, and other nearby vehicles.

With 20 dB antenna side-lobes, a truck or tree with 1,000 square feet of reflecting surface behind the antenna can produce a signal as strong as a car with 10 square feet of reflecting in front of a small hand held antenna. An area survey is required to determine if hand held devices will operate reliably because unobserved roadway traffic and trees behind the operator can interfere with observations made in front of the operator.

This is a typical problem with radar speed guns used by law enforcement officers, NASCAR events, and sports, like baseball, golf, and tennis. Interference from a second radar, automobile ignition, other moving objects, moving fan blades on the intended target, and other radio frequency sources will corrupt measurements. These systems are limited by wavelength, which is 0.02 meter at Ku band, so the beam spread exceeds 45 degrees if the antenna is smaller than 12 inches (0.3 meter). Significant antenna side-lobes extend in all directions unless the antenna is larger than the vehicle on which the radar is mounted. [9]

Side-lobe suppression and FM range modulation are required for reliable operation. There is no way to know the direction of the arriving signal without side-lobe suppression, which requires two or more antennae, each with its own individual receiver. There is no way to know distance without FM range modulation.

Speed, direction, and distance are all required to pick out an individual object.

These limitations are due to the well known limitations of basic physics that cannot be overcome by design.

See also

Bibliography

Related Research Articles

<span class="mw-page-title-main">Amplitude modulation</span> Radio modulation via wave amplitude

Amplitude modulation (AM) is a modulation technique used in electronic communication, most commonly for transmitting messages with a radio wave. In amplitude modulation, the amplitude of the wave is varied in proportion to that of the message signal, such as an audio signal. This technique contrasts with angle modulation, in which either the frequency of the carrier wave is varied, as in frequency modulation, or its phase, as in phase modulation.

<span class="mw-page-title-main">Frequency modulation</span> Encoding of information in a carrier wave by varying the instantaneous frequency of the wave

Frequency modulation (FM) is the encoding of information in a carrier wave by varying the instantaneous frequency of the wave. The technology is used in telecommunications, radio broadcasting, signal processing, and computing.

<span class="mw-page-title-main">Radar</span> Object detection system using radio waves

Radar is a radiolocation system that uses radio waves to determine the distance (ranging), angle (azimuth), and radial velocity of objects relative to the site. It is used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the objects. Radio waves from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds.

Double-sideband suppressed-carrier transmission (DSB-SC) is transmission in which frequencies produced by amplitude modulation (AM) are symmetrically spaced above and below the carrier frequency and the carrier level is reduced to the lowest practical level, ideally being completely suppressed.

<span class="mw-page-title-main">Heterodyne</span> Signal processing technique

A heterodyne is a signal frequency that is created by combining or mixing two other frequencies using a signal processing technique called heterodyning, which was invented by Canadian inventor-engineer Reginald Fessenden. Heterodyning is used to shift signals from one frequency range into another, and is also involved in the processes of modulation and demodulation. The two input frequencies are combined in a nonlinear signal-processing device such as a vacuum tube, transistor, or diode, usually called a mixer.

In radio communication, multipath is the propagation phenomenon that results in radio signals reaching the receiving antenna by two or more paths. Causes of multipath include atmospheric ducting, ionospheric reflection and refraction, and reflection from water bodies and terrestrial objects such as mountains and buildings. When the same signal is received over more than one path, it can create interference and phase shifting of the signal. Destructive interference causes fading; this may cause a radio signal to become too weak in certain areas to be received adequately. For this reason, this effect is also known as multipath interference or multipath distortion.

<span class="mw-page-title-main">Doppler radar</span> Type of radar equipment

A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar. The term applies to radar systems in many domains like aviation, police radar detectors, navigation, meteorology, etc.

A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, typically a sine wave, that for mathematical analysis is considered to be of infinite duration. It may refer to e.g. a laser or particle accelerator having a continuous output, as opposed to a pulsed output.

<span class="mw-page-title-main">VHF omnidirectional range</span> Aviation navigation system

Very High Frequency Omnidirectional Range Station (VOR) is a type of short-range radio navigation system for aircraft, enabling aircraft with a receiving unit to determine its position and stay on course by receiving radio signals transmitted by a network of fixed ground radio beacons. It uses frequencies in the very high frequency (VHF) band from 108.00 to 117.95 MHz. Developed in the United States beginning in 1937 and deployed by 1946, VOR became the standard air navigational system in the world, used by both commercial and general aviation, until supplanted by satellite navigation systems such as GPS in the early 21st century. As such, VOR stations are being gradually decommissioned. In 2000 there were about 3,000 VOR stations operating around the world, including 1,033 in the US, but by 2013 the number in the US had been reduced to 967. The United States is decommissioning approximately half of its VOR stations and other legacy navigation aids as part of a move to performance-based navigation, while still retaining a "Minimum Operational Network" of VOR stations as a backup to GPS. In 2015, the UK planned to reduce the number of stations from 44 to 19 by 2020.

In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency , . It represents the distortion of a returned pulse due to the receiver matched filter of the return from a moving target. The ambiguity function is defined by the properties of the pulse and of the filter, and not any particular target scenario.

<span class="mw-page-title-main">Pulse-Doppler radar</span> Type of radar system

A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.

In digital modulation, minimum-shift keying (MSK) is a type of continuous-phase frequency-shift keying that was developed in the late 1950s by Collins Radio employees Melvin L. Doelz and Earl T. Heald. Similar to OQPSK, MSK is encoded with bits alternating between quadrature components, with the Q component delayed by half the symbol period.

Pulse compression is a signal processing technique commonly used by radar, sonar and echography to either increase the range resolution when pulse length is constrained or increase the signal to noise ratio when the peak power and the bandwidth of the transmitted signal are constrained. This is achieved by modulating the transmitted pulse and then correlating the received signal with the transmitted pulse.

A radar system uses a radio-frequency electromagnetic signal reflected from a target to determine information about that target. In any radar system, the signal transmitted and received will exhibit many of the characteristics described below.

Radar engineering details are technical details pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment. This includes field of view in terms of solid angle and maximum unambiguous range and velocity, as well as angular, range and velocity resolution. Radar sensors are classified by application, architecture, radar mode, platform, and propagation window.

Moving target indication (MTI) is a mode of operation of a radar to discriminate a target against the clutter. It describes a variety of techniques used for finding moving objects, like an aircraft, and filter out unmoving ones, like hills or trees. It contrasts with the modern stationary target indication (STI) technique, which uses details of the signal to directly determine the mechanical properties of the reflecting objects and thereby find targets whether they are moving or not.

Pulse-Doppler signal processing is a radar and CEUS performance enhancement strategy that allows small high-speed objects to be detected in close proximity to large slow moving objects. Detection improvements on the order of 1,000,000:1 are common. Small fast moving objects can be identified close to terrain, near the sea surface, and inside storms.

The chirp pulse compression process transforms a long duration frequency-coded pulse into a narrow pulse of greatly increased amplitude. It is a technique used in radar and sonar systems because it is a method whereby a narrow pulse with high peak power can be derived from a long duration pulse with low peak power. Furthermore, the process offers good range resolution because the half-power beam width of the compressed pulse is consistent with the system bandwidth.

Carrier frequency offset (CFO) is one of many non-ideal conditions that may affect in baseband receiver design. In designing a baseband receiver, we should notice not only the degradation invoked by non-ideal channel and noise, we should also regard RF and analog parts as the main consideration. Those non-idealities include sampling clock offset, IQ imbalance, power amplifier, phase noise and carrier frequency offset nonlinearity.

<span class="mw-page-title-main">High Resolution Wide Swath SAR imaging</span>

High Resolution Wide Swath (HRWS) imaging is an important branch in synthetic aperture radar (SAR) imaging, a remote sensing technique capable of providing high resolution images independent of weather conditions and sunlight illumination. This makes SAR very attractive for the systematic observation of dynamic processes on the Earth's surface, which is useful for environmental monitoring, earth resource mapping and military systems.

References

  1. "Continuous-wave Radar". Federation of American Scientists.
  2. Srivastav, A.; Nguyen, P.; McConnell, M.; Loparo, K. N.; Mandal, S. (October 2020). "A Highly Digital Multiantenna Ground-Penetrating Radar System". IEEE Transactions on Instrumentation and Measurement. 69: 7422–7436. doi:10.1109/TIM.2020.2984415. S2CID   216338273.
  3. "Continuous-wave Radar". Radartutorial.eu.
  4. Ditchburn, R. W. (1991) [1961]. Light. Dover publications Inc. pp. 331–333. ISBN   0-486-66667-0.
  5. James M. Ridenour (1947). Radar System Engineering. MIT Radiation Lab series. Vol. 1. p. 629.
  6. Jim Lesurf. "Improved forms of radar". accessdate=2014-01-24.
  7. 1 2 "Frequency-Modulated Continuous-Wave Radar". Radartutorial. Retrieved 2012-08-07.
  8. M. Ash et al., A New Multistatic FMCW Radar Architecture By Over-The-Air Deramping, IEEE Sensors Journal, No. 99, 2015.
  9. "Ranger EZ". MPH Industries. Archived from the original on 19 September 2011. Retrieved 7 September 2011.