This article needs to be updated.(August 2018) |
Established | 2001 |
---|---|
Director | Fred D. Lublin, MD |
Location | , , US |
Website | www.mountsinai.org/mscenter |
The Corinne Goldsmith Dickinson Center for Multiple Sclerosis is a multiple sclerosis research and treatment center in New York City.
In 2005, it received one of the largest grants ever given for MS research in the United States, a $25 million grant from the National Institutes of Health to study the effectiveness of combining two disease-modifying drugs, and the individual factors that determine disability. [1]
The Center is a part of Mount Sinai Medical Center in Manhattan. Both the Center's Director, Fred D. Lublin, M.D., and the Center's Medical Director, Aaron E. Miller, M.D. are listed in New York Magazine's "Best Doctors of 2008." [2] [3]
The Center was established in 2001 with a $5 million endowment from George J. Gillespie, III [4] and Mount Sinai Hospital trustee Clifford H. Goldsmith. [5] It is named in honor of Goldsmith's daughter, Corinne, who coped with the disease until her death in 1999. [6]
The pathologic hallmarks of multiple sclerosis are central inflammation, blood–brain barrier permeability, demyelination, progressive axonal transection, and a reactive astrogliosis. [7] Demyelination is associated with conduction deficits in affected nerves, including conduction block, a major cause of symptoms early in the disease, and has also been linked to axonal loss, which is associated with permanent deficits later in the disease course. Conversely, remyelination is associated with return of conduction and clinical recovery, but remyelination often fails as the disease progresses, for reasons that are not well understood.
Research in the CGD Center's laboratory (led by Dr. Gareth John) focuses on the mechanisms that control lesion formation and repair in MS. The laboratory is currently supported by grants from the National Institutes of Health, the National Multiple Sclerosis Society, biotech corporations, and private benefactors; work from the laboratory has been published in scientific journals including Nature Medicine and the Journal of Neuroscience .
In a recent study, team members identified the soluble mediator interleukin-11 (IL-11) as a factor that potentiates the survival and maturation of oligodendrocytes, the cells in the brain that produce myelin and are the target of immune attack in MS. IL-11 expression is upregulated at the border of remyelinating lesions in MS, and it may represent a potential target for the design of new therapies to promote lesion repair. These findings were recently published (Zhang et al., J. Neurosci. 2006; 26:12174-85 PMID 17122042).
Using a related approach, members of the laboratory recently found that signaling through Notch1 receptors is activated in oligodendrocyte progenitor cells (OPC) in MS lesions. In the developing CNS, Notch1 restricts OPC differentiation, and is permissive for progenitor expansion. Thus, activation of this pathway in the adult may regulate remyelination. To test this hypothesis, the laboratory has targeted Notch1 inactivation to early OPC in genetically modified animals, using OLIG1 Cre:Notch112f/12f mice. They have found that remyelination is potentiated in these animals, whereas OPC proliferation is restricted. These results suggest regulation of Notch signaling as a therapeutic avenue to enhance remyelination in MS. They were recently submitted for publication.
These studies and others from the laboratory have produced findings that may be relevant to lesion repair in MS. They share a common molecular/cellular approach, beginning with target identification using functional genomics, and progressing through experiments in tissue culture models and into genetically modified animals. The long-term goal of this research is to identify novel therapeutic strategies for MS.
With new drug therapies emerging rapidly, the CGD Center has established a clinical trials program to design and implement tests of experimental agents and allow patients access to therapies not yet widely available.
Study Name | Protocol Title | Sponsor |
---|---|---|
ASSERT | A Multi-Center, Randomized, Double-Blind Placebo Controlled Study Assessing the Add-On Effect of Oral Steroids in Relapsing Remitting Multiple Sclerosis Subjects Treated with Glatiramer Acetate (COPAXONE) | Teva Pharmaceutical Industries |
CombiRx | NIH/NINDS UO1 NS04571901: A Multi-Center, Double-Blind, Randomized Study Comparing the Combined Use of Interferon Beta-1a (AVONEX) and Glatiramer Acetate (COPAXONE) to Either Agent Alone in Patients with Relapsing Remitting Multiple Sclerosis (CombiRx-Phase III) | NIH |
MS F203 EXT | Open-Label Extension Study to Evaluate the Safety, Tolerability and Activity of Oral Fampridine-SR in Subjects with Multiple Sclerosis who Participated in the MS F203 Trial | Acorda |
MS F204 EXT Trial | Open Label Extension Study to Evaluate the Safety, Tolerability and Activity of Oral Fampridine-SR in Patients with Multiple Sclerosis who Participated in the MS F204 Trial (MS F204 EXT) | Acorda |
MS F204 Trial | Double-Blind, Placebo-Controlled, 13-Week, Parallel-Group Study to Evaluate Safety and Efficacy of Oral Fampridine-SR (10 mg b.i.d.) in patients with Multiple Sclerosis | Acorda |
Novartis 2309 Project | A 24-Month, Double-Blind, Randomized, Multi-Center, Placebo-Controlled, Parallel-Group Study Comparing Efficacy and Safety of FTY720 1.25 mg and 0.5 mg Administered Orally Once Daily Versus Placebo in Patients with Relapsing Remitting Multiple Sclerosis | Novartis |
Rituxan | A Phase II/III, Randomized, Double-Blind, Parallel-Group, Placebo-Controlled, Multi-Center Study to Evaluate the Safety and Efficiency of Rituximab in Adults with Primary Progressive Multiple Sclerosis: U2786g | Genentech |
The CGD Center sees over 4,800 patients annually, 1,000 of whom each year are new. The Center utilizes a team of doctors, nurse practitioners, fellows, social workers, consultants and a psychiatrist in its integrated approach to enhancing the treatment of MS, attracting visiting neurologists and patients worldwide.
Many MS Centers provide additional resources with the understanding that some of the most immediate concerns of the newly diagnosed are not medical but social and psychological. [8] In addition to providing full-time social workers for patients and their families through two LCSWs, the CGD Center is unique in providing the services of a psychiatrist trained in the psychiatric manifestations of MS. The Center also provides monthly patient education seminars discussing research and treatment topics.
Myelin is a lipid-rich material that surrounds nerve cell axons to insulate them and increase the rate at which electrical impulses pass along the axon. The myelinated axon can be likened to an electrical wire with insulating material (myelin) around it. However, unlike the plastic covering on an electrical wire, myelin does not form a single long sheath over the entire length of the axon. Rather, myelin ensheaths the axon segmentally: in general, each axon is encased in multiple long sheaths with short gaps between, called nodes of Ranvier. At the nodes of Ranvier, which are approximately one thousandth of a mm in length, the axon's membrane is bare of myelin.
Multiplesclerosis (MS) is an autoimmune disease in which the insulating covers of nerve cells in the brain and spinal cord are damaged. This damage disrupts the ability of parts of the nervous system to transmit signals, resulting in a range of signs and symptoms, including physical, mental, and sometimes psychiatric problems. Specific symptoms can include double vision, vision loss, eye pain, muscle weakness, and loss of sensation or coordination. MS takes several forms, with new symptoms either occurring in isolated attacks or building up over time. In the relapsing forms of MS, between attacks, symptoms may disappear completely, although some permanent neurological problems often remain, especially as the disease advances. In the progressive forms of MS, bodily function slowly deteriorates and disability worsens once symptoms manifest and will steadily continue to do so if the disease is left untreated.
A demyelinating disease refers to any disease affecting the nervous system where the myelin sheath surrounding neurons is damaged. This damage disrupts the transmission of signals through the affected nerves, resulting in a decrease in their conduction ability. Consequently, this reduction in conduction can lead to deficiencies in sensation, movement, cognition, or other functions depending on the nerves affected.
Oligodendrocyte progenitor cells (OPCs), also known as oligodendrocyte precursor cells, NG2-glia, O2A cells, or polydendrocytes, are a subtype of glia in the central nervous system named for their essential role as precursors to oligodendrocytes. They are typically identified in the human by co-expression of PDGFRA and CSPG4.
Experimental autoimmune encephalomyelitis, sometimes experimental allergic encephalomyelitis (EAE), is an animal model of brain inflammation. It is an inflammatory demyelinating disease of the central nervous system (CNS). It is mostly used with rodents and is widely studied as an animal model of the human CNS demyelinating diseases, including multiple sclerosis (MS) and acute disseminated encephalomyelitis (ADEM). EAE is also the prototype for T-cell-mediated autoimmune disease in general.
Multiple sclerosis is an inflammatory demyelinating disease of the CNS in which activated immune cells invade the central nervous system and cause inflammation, neurodegeneration, and tissue damage. The underlying cause is currently unknown. Current research in neuropathology, neuroimmunology, neurobiology, and neuroimaging, together with clinical neurology, provide support for the notion that MS is not a single disease but rather a spectrum.
Multiple sclerosis and other demyelinating diseases of the central nervous system (CNS) produce lesions and glial scars or scleroses. They present different shapes and histological findings according to the underlying condition that produces them.
Remyelination is the process of propagating oligodendrocyte precursor cells to form oligodendrocytes to create new myelin sheaths on demyelinated axons in the CNS. This is a process naturally regulated in the body and tends to be very efficient in a healthy CNS. The process creates a thinner myelin sheath than normal, but it helps to protect the axon from further damage, from overall degeneration, and proves to increase conductance once again. The processes underlying remyelination are under investigation in the hope of finding treatments for demyelinating diseases, such as multiple sclerosis.
Inflammatory demyelinating diseases (IDDs), sometimes called Idiopathic (IIDDs) due to the unknown etiology of some of them, are a heterogenous group of demyelinating diseases - conditions that cause damage to myelin, the protective sheath of nerve fibers - that occur against the background of an acute or chronic inflammatory process. IDDs share characteristics with and are often grouped together under Multiple Sclerosis. They are sometimes considered different diseases from Multiple Sclerosis, but considered by others to form a spectrum differing only in terms of chronicity, severity, and clinical course.
Baló's concentric sclerosis is a disease in which the white matter of the brain appears damaged in concentric layers, leaving the axis cylinder intact. It was described by József Mátyás Baló who initially named it "leuko-encephalitis periaxialis concentrica" from the previous definition, and it is currently considered one of the borderline forms of multiple sclerosis.
Neuroregeneration involves the regrowth or repair of nervous tissues, cells or cell products. Neuroregenerative mechanisms may include generation of new neurons, glia, axons, myelin, or synapses. Neuroregeneration differs between the peripheral nervous system (PNS) and the central nervous system (CNS) by the functional mechanisms involved, especially in the extent and speed of repair. When an axon is damaged, the distal segment undergoes Wallerian degeneration, losing its myelin sheath. The proximal segment can either die by apoptosis or undergo the chromatolytic reaction, which is an attempt at repair. In the CNS, synaptic stripping occurs as glial foot processes invade the dead synapse.
Research in multiple sclerosis may find new pathways to interact with the disease, improve function, curtail attacks, or limit the progression of the underlying disease. Many treatments already in clinical trials involve drugs that are used in other diseases or medications that have not been designed specifically for multiple sclerosis. There are also trials involving the combination of drugs that are already in use for multiple sclerosis. Finally, there are also many basic investigations that try to understand better the disease and in the future may help to find new treatments.
Myelinogenesis is the formation and development of myelin sheaths in the nervous system, typically initiated in late prenatal neurodevelopment and continuing throughout postnatal development. Myelinogenesis continues throughout the lifespan to support learning and memory via neural circuit plasticity as well as remyelination following injury. Successful myelination of axons increases action potential speed by enabling saltatory conduction, which is essential for timely signal conduction between spatially separate brain regions, as well as provides metabolic support to neurons.
Leucine rich repeat and Immunoglobin-like domain-containing protein 1 also known as LINGO-1 is a protein which is encoded by the LINGO1 gene in humans. It belongs to the family of leucine-rich repeat proteins which are known for playing key roles in the biology of the central nervous system. LINGO-1 is a functional component of the Nogo receptor also known as the reticulon 4 receptor.
Tumefactive multiple sclerosis is a condition in which the central nervous system of a person has multiple demyelinating lesions with atypical characteristics for those of standard multiple sclerosis (MS). It is called tumefactive as the lesions are "tumor-like" and they mimic tumors clinically, radiologically and sometimes pathologically.
Multiple sclerosis (MS) can be pathologically defined as the presence of distributed glial scars (scleroses) in the central nervous system that must show dissemination in time (DIT) and in space (DIS) to be considered MS lesions.
Opicinumab (BIIB033) is a fully human monoclonal antibody designed for the treatment of multiple sclerosis, acute optic neuritis (AON), and other associated demyelinating diseases. A biologic drug, it is designed to function as a LINGO-1 protein antagonist, known as "Anti-Lingo-1".
MOG antibody disease (MOGAD) or MOG antibody-associated encephalomyelitis (MOG-EM) is an inflammatory demyelinating disease of the central nervous system. Serum anti-myelin oligodendrocyte glycoprotein antibodies are present in up to half of patients with an acquired demyelinating syndrome and have been described in association with a range of phenotypic presentations, including acute disseminated encephalomyelitis, optic neuritis, transverse myelitis, and neuromyelitis optica.
Patrizia Casaccia is an Italian neuroscientist who is the Director of the Neuroscience Initiative of the Advanced Science Research Center at the City University of New York (CUNY), as well as a Professor of Neuroscience, Genetics & Genomics, and Neurology at the Icahn School of Medicine at Mount Sinai. Casaccia is a pioneer in the study of myelin. Her research focuses on understanding the neurobiological and neuroimmune mechanisms of multiple sclerosis and to translate findings into treatments. Casaccia co-founded the Center for Glial Biology at Mount Sinai and CUNY and is one of the Directors of the center.
Véronique E. Miron is the John David Eaton Chair in Multiple Sclerosis Research at the Barlo MS Centre and Keenan Research Centre for Biomedical Science, Full Professor at the University of Toronto Department of Immunology, and Honorary Chair at the University of Edinburgh Dementia Research Institute.