Curtobacterium flaccumfaciens

Last updated

Curtobacterium flaccumfaciens
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Micrococcales
Family: Microbacteriaceae
Genus: Curtobacterium
Species:
C. flaccumfaciens
Binomial name
Curtobacterium flaccumfaciens
(Hedges 1922) Collins and Jones 1984
Synonyms
  • Bacterium flaccumfaciensHedges 1922
  • Phytomonas flaccumfaciens(Hedges 1922) Bergey et al. 1923
  • Pseudomonas flaccumfaciens(Hedges 1922) Stevens 1925
  • Corynebacterium flaccumfaciens subsp. flaccumfaciens(Hedges 1922) Dowson 1942
  • Corynebacterium betaeKeyworth et al. 1956
  • Corynebacterium flaccumfaciens subsp. betae(Keyworth et al. 1956) Carlson and Vidaver 1982
  • Corynebacterium oortiiSaaltink and Maas Geesteranus 1969
  • Corynebacterium flaccumfaciens subsp. oortii(Saaltink and Maas Geesteranus 1969) Carlson and Vidaver 1982
  • Corynebacterium poinsettiae(Starr and Pirone 1942) Burkholder 1948
  • Corynebacterium flaccumfaciens subsp. poinsettiae(Starr and Pirone 1942) Carlson and Vidaver 1982
  • Corynebacterium flaccumfaciens(Hedges 1922) Dowson 1942

Curtobacterium flaccumfaciens is a Gram-positive bacterium that causes disease on a variety of plants. [1] Gram-positive bacteria characteristics include small irregular rods, lateral flagella, the ability to persist in aerobic environments, and cells containing catalase. In the interest of studying pathogenicity in plants, this species is broken down further into pathovars, which help to better describe the pathogen. [2]

Contents

Genomics

C. flaccumfaciens is a relatively young species, diverging only 172,000 years ago. [3]

Hosts and symptoms

Curtobacterium flaccumfacien is a bacterial wilt pathogen. The hallmark symptoms of bacterial wilt are leaf and petiole wilting. Chlorosis of the leaf and tissue occurs due to the lack of water transport. C. flaccumfaciens has a wide host range not limited to kidney beans, soybeans, tulips, and tomatoes. The species is separated into pathovars based on host range and symptoms. [4] One of the economically important pathovars is C. f. pv. flaccumfaciens. This pathovar produces a bacterial wilt and its primary host range is the genus Phaseolus (beans), but the pathogen can infect many other species of the same family (Fabaceae). [5] In beans, the symptoms can be devastating to the crop yield. These beans have severe foliage wilting and chlorosis.

One ornamental example is C. f. pv. oortii. The primary host are plants from the genus Tulipa (tulips). [6] Although the host range differs, the symptoms are relatively similar. During flowering, typical symptoms of dehydration are observed. Similarly to beans, the tulips get wilt. In severe cases, the plant eventually fails to recover from wilting and dies. [7]

Disease cycle

Survival

Curtobacterium flaccumfaciens can overwinter in plant debris, diseased plants, wild hosts, seeds, or vegetative propagative organs. The bacteria can survive only a couple of weeks as free bacteria in soil. Multiple factors go into survival of a bacterial population, including temperature, humidity, and soil characteristics. Infected seeds cannot be used for susceptible bean crops because Curtobacterium flaccumfaciens pv. flaccumfaciens has been known to survive in dried bean pods from five years and up to 24 years in laboratory conditions. Different pathovars survive in slightly different ways. [8] For example, Curtobacterium flaccumfaciens pv. oortii survive in the vegetative propagative organs (bulbs) rather than in the seeds, like Curtobacterium flaccumfaciens pv. flaccumfaciens. [9]

Dispersal

Curtobacterium flaccumfaciens causes wilting at high populations and disperses in many ways. The bacteria multiply relatively quickly, which increases the possibility that Curtobacterium flaccumfaciens can shed from dying or dead plant material. [10] The pathogen is normally dispersed via agricultural practices such as, planting saved seed and through farm equipment. In the case of beans & tulips, these practices move the propagule during the overwriting phase of their life cycles. This is effective dispersal for the pathogen.

Infection

Curtobacterium flaccumfaciens usually enters the plant though a wound. Natural wounds (created by excision of flowers or genesis of lateral roots) and unnatural wounds could become entry sites. There are no reports of vectors, but the nematode Meloidogyne incognita may assist entry by providing unnatural wounds. [11]

Management

Management varies for each between hosts. For this purpose, we will look specifically at the detection and control methods of Curtobacterium flaccumfaciens pv. flaccumfaciens. Since most plant pathogens are Gram-negative detection of Gram-positive bacterium, using methods such as the KOH test, is a beginners diagnostic tool used to identify this bacterium. [12] Bacteria may be detected beneath the seedcoat by means of a combined cultural and slide agglutination test. Bean seed from countries where the disease is known to occur should be inspected for discoloration of the seedcoat. Immunofluorescence staining can also be used to detect the bacterium in contaminated seed lots. [13] Control may be affected by using disease-free seed and crop rotations. Seeds grown in dry climates are usually free from infection and are, therefore, recommended for distribution. The strongest control regulations handed down by the European and Mediterranean Plant Protection Organization (EPPO) to date was a quarantine procedure. There is little resistance available commercially to C. f. pv. flaccumfaciens and antibiotics are ineffective. [14]

See also

Related Research Articles

<i>Dickeya dadantii</i> Disease-causing Gram Negative Bacillus

Dickeya dadantii is a gram-negative bacillus that belongs to the family Pectobacteriaceae. It was formerly known as Erwinia chrysanthemi but was reassigned as Dickeya dadantii in 2005. Members of this family are facultative anaerobes, able to ferment sugars to lactic acid, have nitrate reductase, but lack oxidases. Even though many clinical pathogens are part of the order Enterobacterales, most members of this family are plant pathogens. D. dadantii is a motile, nonsporing, straight rod-shaped cell with rounded ends, much like the other members of the genus, Dickeya. Cells range in size from 0.8 to 3.2 μm by 0.5 to 0.8 μm and are surrounded by numerous flagella (peritrichous).

This is a glossary of some of the terms used in phytopathology.

<i>Xanthomonas campestris</i> Species of bacterium

Xanthomonas campestris is a gram-negative, obligate aerobic bacterium that is a member of the Xanthomonas genus, which is a group of bacteria that are commonly known for their association with plant disease. The species is considered to be dominant amongst its genus, as it originally had over 140 identified pathovars and has been found to infect both monocotyledonous and dicotyledonous plants of economical value with various plant diseases. This includes "black rot" in cruciferous vegetables, bacterial wilt of turfgrass, bacterial blight, and leaf spot, for example.

<i>Pseudomonas syringae</i> Species of bacterium

Pseudomonas syringae is a rod-shaped, Gram-negative bacterium with polar flagella. As a plant pathogen, it can infect a wide range of species, and exists as over 50 different pathovars, all of which are available to researchers from international culture collections such as the NCPPB, ICMP, and others.

<i>Pseudomonas savastanoi</i> Species of bacterium

Pseudomonas savastanoi is a gram-negative plant pathogenic bacterium that infects a variety of plants. It was once considered a pathovar of Pseudomonas syringae, but following DNA-relatedness studies, it was instated as a new species. It is named after Savastano, a worker who proved between 1887 and 1898 that olive knot are caused by bacteria.

<i>Ralstonia solanacearum</i> Disease bacteria of tomato family, others

Ralstonia solanacearum is an aerobic non-spore-forming, Gram-negative, plant pathogenic bacterium. R. solanacearum is soil-borne and motile with a polar flagellar tuft. It colonises the xylem, causing bacterial wilt in a very wide range of potential host plants. It is known as Granville wilt when it occurs in tobacco. Bacterial wilts of tomato, pepper, eggplant, and Irish potato caused by R. solanacearum were among the first diseases that Erwin Frink Smith proved to be caused by a bacterial pathogen. Because of its devastating lethality, R. solanacearum is now one of the more intensively studied phytopathogenic bacteria, and bacterial wilt of tomato is a model system for investigating mechanisms of pathogenesis. Ralstonia was until recently classified as Pseudomonas, with similarity in most aspects, except that it does not produce fluorescent pigment like Pseudomonas. The genomes from different strains vary from 5.5 Mb up to 6 Mb, roughly being 3.5 Mb of a chromosome and 2 Mb of a megaplasmid. While the strain GMI1000 was one of the first phytopathogenic bacteria to have its genome completed, the strain UY031 was the first R. solanacearum to have its methylome reported. Within the R. solanacearum species complex, the four major monophyletic clusters of strains are termed phylotypes, that are geographically distinct: phylotypes I-IV are found in Asia, the Americas, Africa, and Oceania, respectively.

<i>Xanthomonas</i> Genus of bacteria

Xanthomonas is a genus of bacteria, many of which cause plant diseases. There are at least 27 plant associated Xanthomonas spp., that all together infect at least 400 plant species. Different species typically have specific host and/or tissue range and colonization strategies.

<span class="mw-page-title-main">Halo blight</span> Bacterial plant disease

Halo blight of bean is a bacterial disease caused by Pseudomonas syringae pv. phaseolicola. Halo blight’s pathogen is a gram-negative, aerobic, polar-flagellated and non-spore forming bacteria. This bacterial disease was first discovered in the early 1920s, and rapidly became the major disease of beans throughout the world. The disease favors the places where temperatures are moderate and plentiful inoculum is available.

<i>Clavibacter michiganensis</i> Species of bacterium

Clavibacter michiganensis is an aerobic non-sporulating Gram-positive plant pathogenic actinomycete of the genus Clavibacter. Clavibacter michiganensis has several subspecies. Clavibacter michiganensis subsp. michiganensis causes substantial economic losses worldwide by damaging tomatoes and potatoes.

<i>Xanthomonas vasicola</i> Species of bacterium

Xanthomonas vasicola pv. vasculorum (Xvv) is a gram-negative rod-shaped bacterium which has a single polar flagellum. It is a plant pathogen, causing both bacterial leaf streak of maize (corn) and sugarcane gumming disease. One outbreak in eucalyptus has been reported. Under experimental conditions it can infect sorghum, oats and some grass species. It is not currently a quarantine pathogen in any country, but it has already spread outside its native range and is highly adaptable to different environments.

<span class="mw-page-title-main">Bacterial wilt</span> Species of bacterium

Bacterial wilt is a complex of diseases that occur in plants such as Cucurbitaceae and Solanaceae and are caused by the pathogens Erwinia tracheiphila, a gram-negative bacterium, or Curtobacterium flaccumfaciens pv. flaccumfaciens, a gram-positive bacterium. Cucumber and melon plants are most susceptible, but squash, pumpkins, and gourds may also become infected.

Black rot, caused by the bacterium Xanthomonas campestris pv. campestris (Xcc), is considered the most important and most destructive disease of crucifers, infecting all cultivated varieties of brassicas worldwide. This disease was first described by botanist and entomologist Harrison Garman in Lexington, Kentucky, US in 1889. Since then, it has been found in nearly every country in which vegetable brassicas are commercially cultivated.

<span class="mw-page-title-main">Bacterial soft rot</span> Bacterial plant disease

Bacterial soft rots are caused by several types of bacteria, but most commonly by species of gram-negative bacteria, Erwinia, Pectobacterium, and Pseudomonas. It is a destructive disease of fruits, vegetables, and ornamentals found worldwide, and affects genera from nearly all the plant families. The bacteria mainly attack the fleshy storage organs of their hosts, but they also affect succulent buds, stems, and petiole tissues. With the aid of special enzymes, the plant is turned into a liquidy mush in order for the bacteria to consume the plant cell's nutrients. Disease spread can be caused by simple physical interaction between infected and healthy tissues during storage or transit. The disease can also be spread by insects. Control of the disease is not always very effective, but sanitary practices in production, storing, and processing are something that can be done in order to slow the spread of the disease and protect yields.

<i>Xanthomonas campestris</i> pv. <i>vesicatoria</i> Species of bacterium

Xanthomonas campestris pv. vesicatoria is a bacterium that causes bacterial leaf spot (BLS) on peppers and tomatoes. It is a gram-negative and rod-shaped. It causes symptoms throughout the above-ground portion of the plant including leaf spots, fruit spots and stem cankers. Since this bacterium cannot live in soil for more than a few weeks and survives as inoculum on plant debris, removal of dead plant material and chemical applications to living plants are considered effective control mechanisms.

Bacterial wilt of turfgrass is the only known bacterial disease of turf. The causal agent is the Gram negative bacterium Xanthomonas campestris pv. graminis. The first case of bacterial wilt of turf was reported in a cultivar of creeping bentgrass known as Toronto or C-15, which is found throughout the midwestern United States. Until the causal agent was identified in 1984, the disease was referred to simply as C-15 decline. This disease is almost exclusively found on putting greens at golf courses where extensive mowing creates wounds in the grass which the pathogen uses in order to enter the host and cause disease.

<span class="mw-page-title-main">Bacterial wilt of carnation</span> Bacterial plant disease

Bacterial wilt of carnations is a bacterial disease caused by the plant pathogen Paraburkholderia caryophylli. Previously named Pseudomonas caryophilli, the pathogen is an aerobic gram negative bacteria known for only being capable of entering its host through wounds. Once inside the host, it colonizes the vascular system and roots causing symptoms such as, internal stem cracking, yellowing of the leaves, wilting, and the development of cankers. As a bacterial disease, bacterial wilt of carnations can also be characterized by signs such as bacterial streaming, and bacterial ooze.

<i>Xanthomonas oryzae</i> pv. <i>oryzae</i> Variety of bacteria

Xanthomonas oryzae pv. oryzae is a bacterial pathovar that causes a serious blight of rice, other grasses, and sedges.

<span class="mw-page-title-main">Bacterial blight of soybean</span> Bacterial plant disease

Bacterial blight of soybean is a widespread disease of soybeans caused by Pseudomonas syringaepv. glycinea.

<i>Clavibacter insidiosus</i> Species of bacterium

Clavibacter insidiosus is a species of Clavibacter. It causes bacterial wilt, with its most notable host being Medicago sativa (alfalfa). Other species in the Medicago genus are also known to be hosts such as Medicago falcata. Additionally, Lotus corniculatus, Melilotus alba, Onobrychis viciifolia, and Trifolium sp. are known hosts.

Ralstonia pseudosolanacearum is a soil-borne bacterium. It is a vascular phytopathogen that infects host plants through the root system causing wilting disease that causes loss in a wide range of crops. R. pseudosolanacearum is Gram negative and was originally identified as Ralstonia solanacearum, however, in 2014 Safni et al. proposed a taxonomic revision of the Ralstonia solanacearum species complex to reclassify phylotype strains, including R. pseudosolanacearum.

References

  1. Michelle J. Francis; Richard R. Doherty; Minoo Patel; John F. Hamblin; Samar Ojaimi; Tony M. Korman (2 May 2011). "Curtobacterium flaccumfaciens Septic Arthritis following puncture with a Coxspur Hawthorn Thorn". Journal of Clinical Microbiology . 49 (7): 2759–2760. doi:10.1128/JCM.00340-11. PMC   3147839 . PMID   21562106.
  2. George N. Agriosrman (October 9, 2005). Agrios g.n. 2005. Plant pathology 5th edition. New York, USA: Academic Press.
  3. Morris, Cindy; Moury, Benoit (2019). "Revisiting the Concept of Host Range of Plant Pathogens". Annual Review of Phytopathology . 57 (1): 63–90. doi: 10.1146/annurev-phyto-082718-100034 . PMID   31082307. S2CID   153313237.
  4. U.F. Sammer; K. Reiher (2012). "Curtobacterium flaccumfaciens pv. flaccumfaciens on Soybean in Germany–A Threat for Farming". Journal of Phytopathology . 160 (6): 314–316. doi:10.1111/j.1439-0434.2012.01902.x.
  5. R. M. Harveson; H. F. Schwartz; U. Mazzucchi (2007). "Bacterial diseases of dry edible beans in the Central High Plains". Plant Health Progress . 8: 35. doi:10.1094/PHP-2007-0125-01-DG.
  6. C. Allen; P. Prior; A.C. Hayward (2005). Bacterial wilt disease and the Ralstonia solanacearum species complex. American Phytopathological Society.
  7. M.J. Davis (1986). "Taxonomy of plant-pathogenic coryneform bacteria". Annual Review of Phytopathology . 24 (1): 115–140. doi:10.1146/annurev.phyto.24.1.115.
  8. T. S. Júnior; D. R. Negrão; A. T. Itako; J. M. Soman; A. C. Maringoni (2012). "Survival of Curtobacterium flaccumfaciens pv. flaccumfaciens in Soil and Bean Crop Debris". Journal of Plant Pathology. 94 (2): 331–337.
  9. C. Allen; P. Prior; A.C. Hayward (2005). Bacterial wilt disease and the Ralstonia solanacearum species complex. American Phytopathological Society.
  10. George N. Agriosrman (October 9, 2005). Agrios g.n. 2005. Plant pathology 5th edition (PDF). New York, USA: Academic Press . Retrieved 4 December 2016.
  11. P. R. Miller; H. L. Pollard (1976). Multilingual compendium of plant diseases. American Phytopathological Society.
  12. George N. Agriosrman (October 9, 2005). Agrios g.n. 2005. Plant pathology 5th edition. New York, USA: Academic Press.
  13. A. Calzolari; M. Tomesani; U. Mazzucchi (1987). "Comparison of immunofluorescence staining and indirect isolation for the detection of Corynebacterium flaccumfaciens in bean seeds". EPPO Bulletin. 17 (2): 157–163. doi:10.1111/j.1365-2338.1987.tb00021.x.
  14. OEPP/EPPO (1982). "Data sheets on quarantine organisms No. 48, Corynebacterium flaccumfaciens". Bulletin OEPP/EPPO Bulletin. 12 (1).