Cytophaga hutchinsonii

Last updated

Cytophaga hutchinsonii
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Binomial name
Cytophaga hutchinsonii

Cytophaga hutchinsonii is a bacterial species in the genus Cytophaga . C. hutchinsonii is an aerobic, gram-negative, soil, microorganism that exhibits gliding motility, enabling it to move quickly over surfaces and is capable of cellulose degradation. [1]

Contents

Discovery

Cytophaga hutchinsonii was first classified by Russian microbiologist Sergei Winogradsky in 1929. [2]

Winogradsky found several cellulose decomposers which were morphologically similar to Spirochaeta cytophaga, a bacterium discovered in 1919 by microbiologists Hutchinson and Clayton. [3] S. cytophaga is an aerobic cellulose degrading bacterial species found in soil environments. Winogradsky mistakenly classified Cytophaga hutchinsonii as identical to Spirochaeta cytophaga. The 5 species were classified in the novel genus Cytophaga.

In 1933, Polish microbiologist Helena Krzemieniewska identified differences in the life cycle between Spirochaeta cytophaga and Cytophaga hutchinsonii. [2] Spirochaeta cytophaga was renamed to Cytophaga myxococcoides.

Gliding motility

Gliding motility, which is present throughout the Cytophaga-Flavobacteria group, is not well understood. [4] Motility does not involve flagella, and is characterized as a novel mechanism in the C-F group. [1] The C. hutchinsonii genome contains homologs to the Flavobacterium johnsoniae gliding genes (gld). [5] It is believed that gliding ability is tied to biopolymer degradation ability for many organisms in the Cytophaga-Flavobacteria group. [1]

Cellulose degradation

Cytophaga hutchinsonii is capable of digesting crystalline cellulose to glucose in a contact dependent manner. [5] The cellulose degrading enzymes have been identified and have no known homologs. [5]

Cellulose is a linear highly ordered polysaccharide that forms long crystalline fibrils which are difficult to degrade, particularly within small bacterial cells due to their small size. [6] Most aerobic bacteria degrade cellulose with exoglucanases, endoglucanases, and β-glucosidases. Many contain cellulosomes, multienzyme structures that degrade cellulose on bacterial cell surfaces. C. hutchinsonii does not code for cellulosomes. Degradation most likely occurs in the bacterial periplasm. [6]

Cellulose-degrading enzymes

Cytophaga hutchinsonii encodes 9 speculated processive endo-β-1,4-glucanases belonging to GH5 and GH9, which are known glycoside hydrolase families. [5] [6] Eight of the genes coding for endoglucanases are cel5A, cel5B, cel5C, cel9A, cel9B, cel9C, cel9E, and cel9F. [7] Cel5B and Cel9C are periplasmic endoglucanases, while Cel5A, Cel9A, Cel9B, Cel9D, and Cel9E are predicted to be secreted endoglucanases, which use a type IX secretion system to produce oligomers from amorphous cellulose (RAC). [7]

They also contain β-glucosidases (bgl), enzymes that hydrolyze the final step, turning cellobiose (a disaccharide) into glucose. β-glucosidases belong to GH3, another glycoside hydrolase family. C. hutchinsonii contains four β-glucosidases located in cellular periplasm, called BglA, BglB, BglC, and BglD. [6] BglB is the main β-glucosidase gene transcribed when cells are grown in glucose or cellobiose cultures. BglA is only transcribed when cells are grown in cellobiose culture (produced from cellulose degradation). BglA and BglB are essential β-glucosidases, and in mutant cells not expressing both proteins, cells are unable to degrade cellobiose. Unlike other β-glucosidases, BglA’s hydrolytic activity does not decrease with longer substrate chains like cyclodextrins (cellotriose and cellotetraose). This is likely due to larger active site with less substrate specificity, and BglA is able to cleave glucose units one by one in a non-processive manner, dissociating from substrate after each glucose is cleaved. BglA’s ability to cleave longer cellulose fragments likely plays a role in allowing C. hutchinsonii to degrade cellulose without cellobiohydrolases.

BglB on the other hand does not hydrolyze cellodextrins effectively. The processive endoglucanases, which can catalyze several enzymes before releasing the cellulose substrate, could play a role in allowing C. hutchinsonii to degrade without encoding separate cellobiohydrolases. [5] Additionally, adding degrading cellodextrins in the periplasm could increase efficiency by reducing loss of cellobiose to competing microorganisms. [7]

Applications

The cyclodextrin degrading B-glucosidases are of interest economically due to their lack of inhibition by glucose. [8]

Related Research Articles

<span class="mw-page-title-main">Cellulase</span> Class of enzymes

Cellulase is any of several enzymes produced chiefly by fungi, bacteria, and protozoans that catalyze cellulolysis, the decomposition of cellulose and of some related polysaccharides:

<span class="mw-page-title-main">Acarbose</span> Chemical compound

Acarbose (INN) is an anti-diabetic drug used to treat diabetes mellitus type 2 and, in some countries, prediabetes. It is a generic sold in Europe and China as Glucobay, in North America as Precose, and in Canada as Prandase. It is cheap and popular in China, but not in the U.S. One physician explains the use in the U.S. is limited because it is not potent enough to justify the side effects of diarrhea and flatulence. However, a recent large study concludes "acarbose is effective, safe and well tolerated in a large cohort of Asian patients with type 2 diabetes." A possible explanation for the differing opinions is an observation that acarbose is significantly more effective in patients eating a relatively high carbohydrate Eastern diet.

<span class="mw-page-title-main">Beta-glucosidase</span> Class of enzymes

β-Glucosidase is an enzyme that catalyses the following reaction:

<span class="mw-page-title-main">Glycoside hydrolase</span> Enzyme

Glycoside hydrolases catalyze the hydrolysis of glycosidic bonds in complex sugars. They are extremely common enzymes with roles in nature including degradation of biomass such as cellulose (cellulase), hemicellulose, and starch (amylase), in anti-bacterial defense strategies, in pathogenesis mechanisms and in normal cellular function. Together with glycosyltransferases, glycosidases form the major catalytic machinery for the synthesis and breakage of glycosidic bonds.

Fibrobacter succinogenes is a cellulolytic bacterium species in the genus Fibrobacter. It is present in the rumen of cattle. F. succinogenes is a gram negative, rod-shaped, obligate anaerobe that is a major contributor to cellulose digestion. Since its discovery in the 1950s, it has been studied for its role in herbivore digestion and cellulose fermentation, which can be utilized in biofuel production.

In enzymology, a cellobiose dehydrogenase (acceptor) (EC 1.1.99.18) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cellulose synthase (UDP-forming)</span> Cellulose synthesizing enzyme in plants and bacteria

The UDP-forming form of cellulose synthase is the main enzyme that produces cellulose. Systematically, it is known as UDP-glucose:(1→4)-β-D-glucan 4-β-D-glucosyltransferase in enzymology. It catalyzes the chemical reaction:

<span class="mw-page-title-main">Gliding motility</span>

Gliding motility is a type of translocation used by microorganisms that is independent of propulsive structures such as flagella, pili, and fimbriae. Gliding allows microorganisms to travel along the surface of low aqueous films. The mechanisms of this motility are only partially known.

<i>Cytophaga</i> Genus of bacteria

Cytophaga is a genus of Gram-negative, gliding, rod-shaped bacteria. This bacterium is commonly found in soil, rapidly digests crystalline cellulose C. hutchinsonii is able to use its gliding motility to move quickly over surfaces. Although the mechanism for this is not known, there is a belief that the flagellum is not used

Chaetomium cupreum is a fungus in the family Chaetomiaceae. It is able to decay in manufactured cellulosic materials, and is known to antagonize a wide range of soil microorganisms. This species is component of the biocontrol agent, Ketomium, a commercial biofungicide. It has also been investigated for use in the production of natural dyes. Chaetomium cupreum is mesophilic and known to occur in harsh environments and can rapidly colonize organic substrates in soil. Laboratory cultures of C. cupreum can be propagated on a range of common growth media including potato dextrose at ambient or higher than ambient temperature producing cottony white colonies with a reddish reverse.

<span class="mw-page-title-main">DsbA</span>

DsbA is a bacterial thiol disulfide oxidoreductase (TDOR). DsbA is a key component of the Dsb family of enzymes. DsbA catalyzes intrachain disulfide bond formation as peptides emerge into the cell's periplasm.

<span class="mw-page-title-main">Glucanase</span>

Glucanases are enzymes that break down large polysaccharides via hydrolysis. The product of the hydrolysis reaction is called a glucan, a linear polysaccharide made of up to 1200 glucose monomers, held together with glycosidic bonds. Glucans are abundant in the endosperm cell walls of cereals such as barley, rye, sorghum, rice, and wheat. Glucanases are also referred to as lichenases, hydrolases, glycosidases, glycosyl hydrolases, and/or laminarinases. Many types of glucanases share similar amino acid sequences but vastly different substrates. Of the known endo-glucanases, 1,3-1,4-β-glucanase is considered the most active.

Geobacillus thermoglucosidasius is a thermophilic gram-positive bacterium, and a member of the Bacillota phylum. It was first isolated from soil in Japan in 1983.

Acidobacterium capsulatum is a bacterium. It is an acidophilic chemoorganotrophic bacterium containing menaquinone. It is gram-negative, facultative anaerobic, mesophilic, non-spore-forming, capsulated, saccharolytic and rod-shaped. It is also motile by peritrichous flagella. Its type strain is JCM 7670.

The type 2 secretion system is a type of protein secretion machinery found in various species of Gram-negative bacteria, including many human pathogens such as Pseudomonas aeruginosa and Vibrio cholerae. The type II secretion system is one of six protein secretory systems commonly found in Gram-negative bacteria, along with the type I, type III, and type IV secretion systems, as well as the chaperone/usher pathway, the autotransporter pathway/type V secretion system, and the type VI secretion system. Like these other systems, the type II secretion system enables the transport of cytoplasmic proteins across the lipid bilayers that make up the cell membranes of Gram-negative bacteria. Secretion of proteins and effector molecules out of the cell plays a critical role in signaling other cells and in the invasion and parasitism of host cells.

Spirochaeta thermophila is a fairly recently discovered free-living, anaerobic, spirochaete that seems to be the most thermophilic of the Spirochaetales order. The type species was discovered in 1992 in Kuril islands, Russia and described in Aksenova, et al. It has been isolated in the sediments and water columns of brackish aquatic habitats of various ponds, lakes, rivers, and oceans. This organism is identified as a new species based on its unique ability to degrade cellulose, xylan, and other α- and β-linked sugars and use them as the sole carbon source by encoding many glycoside hydrolases. It is presumed to secrete cellulases to break down plant-matter around it but there has been little work on the characterization of the enzymes responsible for this.

<i>Terriglobus roseus</i> Species of bacteria

Terriglobus roseus is a bacterium belonging to subdivision 1 of the Acidobacteriota phylum, and is closely related to the genera Granulicella and Edaphobacter. T. roseus was the first species recognized in the genus Terriglobus in 2007. This bacterial species is extremely abundant and diverse in agricultural soils. T. roseus is an aerobic Gram-negative rod lacking motility. This bacteria can produce extracellular polymeric substances (EPS) to form a biofilm, or extracellular matrix, for means of protection, communication amongst neighboring cells, etc. Its type strain is KBS 63.

<i>Arthrobacter bussei</i> Species of bacterium

Arthrobacter bussei is a pink-coloured, aerobic, coccus-shaped, Gram-stain-positive, oxidase-positive and catalase-positive bacterium isolated from cheese made of cow´s milk. A. bussei is non-motile and does not form spores. Rod–coccus life cycle is not observed. Cells are 1.1–1.5 µm in diameter. On trypticase soy agar it forms pink-coloured, raised and round colonies, which are 1.0 mm in diameter after 5 days at 30 °C The genome of the strain A. bussei KR32T has been fully sequenced.

Cytophagales is an order of non-spore forming, rod-shaped, Gram-negative bacteria that move through a gliding or flexing motion. These chemoorganotrophs are important remineralizers of organic materials into micronutrients. They are widely dispersed in the environment, found in ecosystems including soil, freshwater, seawater and sea ice. Cytophagales is included in the Bacteroidota phylum.

Breznakibacter xylanolyticus is a freshwater gliding bacterium that degrades insoluble particulate xylans and dominates xylan fermentation, particularly in sulfur and methane-rich environments. It is the only species in the genus Breznakibacter. At the time of isolation it was classified in the order Cytophagales on the basis of phenotypic characteristics such as polymer degradation and gliding motility. It has since been reclassified to the order Bacteroidales due to 16s rRNA genome sequence analysis.

References

  1. 1 2 3 "Home - Cytophaga hutchinsonii ATCC 33406". genome.jgi.doe.gov. Retrieved 2021-04-01.
  2. 1 2 "Sergei Nicholaevitch Winogradsky, 1856-1953". Obituary Notices of Fellows of the Royal Society. 8 (22): 635–644. November 1953. doi: 10.1098/rsbm.1953.0022 . ISSN   1479-571X.
  3. Stanier, Roger (1940-04-30). "Studies on the Cytophagas" (PDF). Journal of Bacteriology . 40 (5): 619–634. doi:10.1128/jb.40.5.619-635.1940. PMC   374663 . PMID   16560373 via (JB.ASM) Journal of Bacteriology - American Society for Microbiology.
  4. "Cytophaga hutchinsonii (strain ATCC 33406 / DSM 1761 / CIP 103989 / NBRC 15051 / NCIMB 9469 / D465)". www.uniprot.org. Retrieved 2021-04-01.
  5. 1 2 3 4 5 Xie, Gary; Bruce, David C.; Challacombe, Jean F.; Chertkov, Olga; Detter, John C.; Gilna, Paul; Han, Cliff S.; Lucas, Susan; Misra, Monica; Myers, Gerald L.; Richardson, Paul (2007-06-01). "Genome Sequence of the Cellulolytic Gliding Bacterium Cytophaga hutchinsonii". Applied and Environmental Microbiology. 73 (11): 3536–3546. Bibcode:2007ApEnM..73.3536X. doi: 10.1128/AEM.00225-07 . ISSN   0099-2240. PMC   1932680 . PMID   17400776.
  6. 1 2 3 4 Bai, Xinfeng; Wang, Xifeng; Wang, Sen; Ji, Xiaofei; Guan, Zhiwei; Zhang, Weican; Lu, Xuemei (2017). "Functional Studies of β-Glucosidases of Cytophaga hutchinsonii and Their Effects on Cellulose Degradation". Frontiers in Microbiology. 8: 140. doi: 10.3389/fmicb.2017.00140 . ISSN   1664-302X. PMC   5288383 . PMID   28210251.
  7. 1 2 3 Bank, RCSB Protein Data. "RCSB PDB - 5IHS: Structure of CHU_2103 from Cytophaga hutchinsonii". www.rcsb.org. Retrieved 2021-04-01.
  8. Zhang, Cong; Wang, Xifeng; Zhang, Weican; Zhao, Yue; Lu, Xuemei (2017-03-01). "Expression and characterization of a glucose-tolerant β-1,4-glucosidase with wide substrate specificity from Cytophaga hutchinsonii". Applied Microbiology and Biotechnology. 101 (5): 1919–1926. doi:10.1007/s00253-016-7927-4. ISSN   1432-0614. PMID   27822737. S2CID   39035201.