Cytophaga

Last updated

Cytophaga
Bakterii roda Cytophaga, vyrosshie na tviordoi pitatel'noi srede.jpg
Cytophaga image.
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Cytophaga

Winogradsky 1929 (Approved Lists 1980)
Species

Cytophaga is a genus of Gram-negative, gliding, rod-shaped bacteria. This bacterium is commonly found in soil, rapidly digests crystalline cellulose [1] C. hutchinsonii is able to use its gliding motility to move quickly over surfaces. Although the mechanism for this is not known, there is a belief that the flagellum is not used [1]

Contents

Species

The following are some species in Cytophaga:

Species previously classified in Cytophaga:

Related Research Articles

<span class="mw-page-title-main">Bacteroidota</span> Phylum of Gram-negative bacteria

The phylum Bacteroidota is composed of three large classes of Gram-negative, nonsporeforming, anaerobic or aerobic, and rod-shaped bacteria that are widely distributed in the environment, including in soil, sediments, and sea water, as well as in the guts and on the skin of animals.

<i>Dickeya dadantii</i> Disease-causing Gram Negative Bacillus

Dickeya dadantii is a gram-negative bacillus that belongs to the family Pectobacteriaceae. It was formerly known as Erwinia chrysanthemi but was reassigned as Dickeya dadantii in 2005. Members of this family are facultative anaerobes, able to ferment sugars to lactic acid, have nitrate reductase, but lack oxidases. Even though many clinical pathogens are part of the order Enterobacterales, most members of this family are plant pathogens. D. dadantii is a motile, nonsporing, straight rod-shaped cell with rounded ends, much like the other members of the genus, Dickeya. Cells range in size from 0.8 to 3.2 μm by 0.5 to 0.8 μm and are surrounded by numerous flagella (peritrichous).

Fibrobacterota is a small bacterial phylum which includes many of the major rumen bacteria, allowing for the degradation of plant-based cellulose in ruminant animals. Members of this phylum were categorized in other phyla. The genus Fibrobacter was removed from the genus Bacteroides in 1988.

<i>Elizabethkingia meningoseptica</i> Species of bacterium

Elizabethkingia meningoseptica is a Gram-negative, rod-shaped bacterium widely distributed in nature. It may be normally present in fish and frogs; it may be isolated from chronic infectious states, as in the sputum of cystic fibrosis patients. In 1959, American bacteriologist Elizabeth O. King was studying unclassified bacteria associated with pediatric meningitis at the Centers for Disease Control and Prevention in Atlanta, when she isolated an organism that she named Flavobacterium meningosepticum. In 1994, it was reclassified in the genus Chryseobacterium and renamed Chryseobacterium meningosepticum(chryseos = "golden" in Greek, so Chryseobacterium means a golden/yellow rod similar to Flavobacterium). In 2005, a 16S rRNA phylogenetic tree of Chryseobacteria showed that C. meningosepticum along with C. miricola were close to each other but outside the tree of the rest of the Chryseobacteria and were then placed in a new genus Elizabethkingia named after the original discoverer of F. meningosepticum.

Sorangium cellulosum is a soil-dwelling Gram-negative bacterium of the group myxobacteria. It is motile and shows gliding motility. Under stressful conditions this motility, as in other myxobacteria, the cells congregate to form fruiting bodies and differentiate into myxospores. These congregating cells make isolation of pure culture and colony counts on agar medium difficult as the bacterium spread and colonies merge. It has an unusually-large genome of 13,033,779 base pairs, making it the largest bacterial genome sequenced to date by roughly 4 Mb.

<span class="mw-page-title-main">Flavobacteriia</span> Class of bacteria

The class Flavobacteriia is composed of a single class of environmental bacteria. It contains the family Flavobacteriaceae, which is the largest family in the phylum Bacteroidota. This class is widely distributed in soil, fresh, and seawater habitats. The name is often spelt Flavobacteria, but was officially named Flavobacteriia in 2012.

<i>Flavobacterium columnare</i> Species of bacterium

Flavobacterium columnare is a thin Gram-negative rod bacterium of the genus Flavobacterium. The name derives from the way in which the organism grows in rhizoid columnar formations.

<span class="mw-page-title-main">Columnaris</span> Bacterial infection of fish

Columnaris (also referred to as cottonmouth) is a symptom of disease in fish which results from an infection caused by the Gram-negative, aerobic, rod-shaped bacterium Flavobacterium columnare. It was previously known as Bacillus columnaris, Chondrococcus columnaris, Cytophaga columnaris and Flexibacter columnaris. The bacteria are ubiquitous in fresh water, and cultured fish reared in ponds or raceways are the primary concern – with disease most prevalent in air temperatures above 12–14 °C. It is often mistaken for a fungal infection. The disease is highly contagious and the outcome is often fatal. It is not zoonotic.

Fibrobacter succinogenes is a cellulolytic bacterium species in the genus Fibrobacter. It is present in the rumen of cattle. F. succinogenes is a gram negative, rod-shaped, obligate anaerobe that is a major contributor to cellulose digestion. Since its discovery in the 1950s, it has been studied for its role in herbivore digestion and cellulose fermentation, which can be utilized in biofuel production.

<span class="mw-page-title-main">Gliding motility</span>

Gliding motility is a type of translocation used by microorganisms that is independent of propulsive structures such as flagella, pili, and fimbriae. Gliding allows microorganisms to travel along the surface of low aqueous films. The mechanisms of this motility are only partially known.

Acidobacterium capsulatum is a bacterium. It is an acidophilic chemoorganotrophic bacterium containing menaquinone. It is gram-negative, facultative anaerobic, mesophilic, non-spore-forming, capsulated, saccharolytic and rod-shaped. It is also motile by peritrichous flagella. Its type strain is JCM 7670.

Acetivibrio straminisolvens is a moderately thermophilic, aerotolerant and cellulolytic bacterium. It is non-motile, spore-forming, straight or slightly curved rod, with type strain CSK1T. Its genome has been sequenced.

Flavobacterium psychrophilum is a psychrophilic, gram-negative bacterial rod, belonging to the Bacteroidota. It is the causative agent of bacterial coldwater disease (BCWD) and was first isolated in 1948 during a die-off in the salmonid Oncorhynchus kisutch.

Spirochaeta thermophila is a fairly recently discovered free-living, anaerobic, spirochaete that seems to be the most thermophilic of the Spirochaetales order. The type species was discovered in 1992 in Kuril islands, Russia and described in Aksenova, et al. It has been isolated in the sediments and water columns of brackish aquatic habitats of various ponds, lakes, rivers, and oceans. This organism is identified as a new species based on its unique ability to degrade cellulose, xylan, and other α- and β-linked sugars and use them as the sole carbon source by encoding many glycoside hydrolases. It is presumed to secrete cellulases to break down plant-matter around it but there has been little work on the characterization of the enzymes responsible for this.

Dokdonia donghaensis is a strictly aerobic, gram-negative, phototrophic bacterium that thrives in marine environments. The organism can grow at a broad range of temperatures on seawater media. It has the ability to form biofilms, which increases the organism's resistance to antimicrobial agents, such as tetracycline.

Polaribacter is a genus in the family Flavobacteriaceae. They are gram-negative, aerobic bacteria that can be heterotrophic, psychrophilic or mesophilic. Most species are non-motile and species range from ovoid to rod-shaped. Polaribacter forms yellow- to orange-pigmented colonies. They have been mostly adapted to cool marine ecosystems, and their optimal growth range is at a temperature between 10 and 32 °C and at a pH of 7.0 to 8.0. They are oxidase and catalase-positive and are able to grow using carbohydrates, amino acids, and organic acids.

<i>Terriglobus roseus</i> Species of bacteria

Terriglobus roseus is a bacterium belonging to subdivision 1 of the Acidobacteriota phylum, and is closely related to the genera Granulicella and Edaphobacter. T. roseus was the first species recognized in the genus Terriglobus in 2007. This bacterial species is extremely abundant and diverse in agricultural soils. T. roseus is an aerobic Gram-negative rod lacking motility. This bacteria can produce extracellular polymeric substances (EPS) to form a biofilm, or extracellular matrix, for means of protection, communication amongst neighboring cells, etc. Its type strain is KBS 63.

Cytophaga hutchinsonii is a bacterial species in the genus Cytophaga. C. hutchinsonii is an aerobic, gram-negative, soil, microorganism that exhibits gliding motility, enabling it to move quickly over surfaces and is capable of cellulose degradation.

Cytophagales is an order of non-spore forming, rod-shaped, Gram-negative bacteria that move through a gliding or flexing motion. These chemoorganotrophs are important remineralizers of organic materials into micronutrients. They are widely dispersed in the environment, found in ecosystems including soil, freshwater, seawater and sea ice. Cytophagales is included in the Bacteroidota phylum.

Breznakibacter xylanolyticus is a freshwater gliding bacterium that degrades insoluble particulate xylans and dominates xylan fermentation, particularly in sulfur and methane-rich environments. It is the only species in the genus Breznakibacter. At the time of isolation it was classified in the order Cytophagales on the basis of phenotypic characteristics such as polymer degradation and gliding motility. It has since been reclassified to the order Bacteroidales due to 16s rRNA genome sequence analysis.

References

  1. 1 2 Home - Cytophaga hutchinsonii ATCC 33406. (n.d.). Retrieved May 02, 2017, from http://genome.jgi.doe.gov/cythu/cythu.home.html
  2. Zhu, Yongtao; McBride, Mark (2014). "Deletion of the Cytophaga hutchinsonii type IX secretion system gene sprP results in defects in glinding motility and cellulose utilization". Appl Microbiol Biotechnol. 98 (2): 763–755. doi:10.1007/s00253-013-5355-2. PMID   24257839. S2CID   7288131.
  3. García-López, Marina; Meier-Kolthoff, Jan P.; Tindall, Brian J.; Gronow, Sabine; Woyke, Tanja; Kyrpides, Nikos C.; Hahnke, Richard L.; Göker, Markus (2019). "Analysis of 1,000 Type-Strain Genomes Improves Taxonomic Classification of Bacteroidetes". Frontiers in Microbiology. 10: 2083. doi: 10.3389/fmicb.2019.02083 . ISSN   1664-302X. PMC   6767994 . PMID   31608019.
  4. Haack, Sheridan Kidd; Breznak, John A. (1993-01-01). "Cytophaga xylanolytica sp. nov., a xylan-degrading, anaerobic gliding bacterium". Archives of Microbiology. 159 (1): 6–15. Bibcode:1993ArMic.159....6H. doi:10.1007/BF00244257. ISSN   1432-072X. S2CID   21521895.