Delftia

Last updated

Delftia
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Betaproteobacteria
Order: Burkholderiales
Family: Comamonadaceae
Genus: Delftia
Wen et al. 1999
Type species
Delftia acidovorans
Delftia litopenaei wsw-7.jpg

Delftia is a genus of Gram-negative bacteria that was first isolated from soil in Delft, Netherlands. The species is named after both the city, and in honor of pioneering research in the field of bacteriology that occurred in Delft. Cells in the genus Delftia are rod shaped and straight or slightly curved. Cells occur singly or in pairs, are 0.4–0.8ɥM wide and 2.5–4.1 μm long. Delftia species are motile by flagella, nonsporulating, and chemo-organotrophic. [1]

Contents

Species

Notable Characteristics

Delftia species are known for their unique metabolic abilities to break down or transform a variety of pollutants. They can degrade acetaminophen, [4] PAHs, [5] [6] chloroaniline, [7] and herbicides. [8] They can also detoxify heavy metals, such as cadmium [9] and gold. [10]

Related Research Articles

<span class="mw-page-title-main">Acidobacteriota</span> Phylum of bacteria

Acidobacteriota is a phylum of Gram-negative bacteria. Its members are physiologically diverse and ubiquitous, especially in soils, but are under-represented in culture.

<i>Thermus</i> Genus of bacteria

Thermus is a genus of thermophilic bacteria. It is one of several bacteria belonging to the Deinococcota phylum. According to comparative analysis of 16S rRNA, this is one the most ancient group of bacteria Thermus species can be distinguished from other genera in the family Thermaceae as well as all other bacteria by the presence of eight conserved signature indels found in proteins such as adenylate kinase and replicative DNA helicase as well as 14 conserved signature proteins that are exclusively shared by members of this genus.

<i>Rhodococcus</i> Genus of bacteria

Rhodococcus is a genus of aerobic, nonsporulating, nonmotile Gram-positive bacteria closely related to Mycobacterium and Corynebacterium. While a few species are pathogenic, most are benign, and have been found to thrive in a broad range of environments, including soil, water, and eukaryotic cells. Some species have large genomes, including the 9.7 megabasepair genome of Rhodococcus sp. RHA1.

<i>Pseudomonas gessardii</i> Species of bacterium

Pseudomonas gessardii is a fluorescent, Gram-negative, rod-shaped bacterium isolated from natural mineral waters in France. Based on 16S rRNA analysis, P. gessardii has been placed in the P. fluorescens group.

Delftia acidovorans is a Gram-negative, motile, non-sporulating, rod-shaped bacterium known for its ability to biomineralize gold and bioremediation characteristics. It was first isolated from soil in Delft, Netherlands. The bacterium was originally categorized as Pseudomonas acidovorans and Comamonas acidovorans before being reclassified as Delftia acidovorans.

<i>Comamonas testosteroni</i> Species of bacterium

Comamonas testosteroni is a Gram-negative environmental bacterium capable of utilizing testosterone as a carbon source, and degrading other sterols such as ergosterol and estrogens. Strain I2gfp has been used in bioaugmentation trials, in attempts to treat the industrial byproduct 3-chloroaniline. It was first classified as a human pathogen in 1987 according to the National Library of Medicine. A number of strains of Comamonas, including C. testosteroni, have been shown to consume terephthalic acid, one of the components of PET plastic, as a sole carbon source.

Lysinibacillus sphaericus is a Gram-positive, mesophilic, rod-shaped bacterium commonly found on soil. It can form resistant endospores that are tolerant to high temperatures, chemicals and ultraviolet light and can remain viable for long periods of time. It is of particular interest to the World Health Organization due to the larvicide effect of some strains against two mosquito genera, more effective than Bacillus thuringiensis, frequently used as a biological pest control. L. sphaericus cells in a vegetative state are also effective against Aedes aegypti larvae, an important vector of yellow fever and dengue viruses.

<i>Massilia</i> (bacterium) Genus of bacteria

The genus Massilia is an outdated genus name of bacteria within the family Oxalobacteriaceae. All Massilia species were reclassified in 2023 into one of the following genera: Duganella, Pseudoduganella, Janthinobacterium,Telluria,Rugamonas,Mokoshia, or Zemynaea.

Collimonas is a genus of bacteria in the family Oxalobacteraceae. Culturable representatives of this genus have the ability to lyse chitin, to use fungal hyphae as a source of food, to produce antifungal molecules and to be effective at weathering.

<i>Halomonas titanicae</i> Species of bacterium

Halomonas titanicae is a gram-negative, halophilic species of bacteria which was isolated in 2010 from rusticles recovered from the wreck of the RMS Titanic. It has been estimated by Henrietta Mann, one of the researchers that first isolated it, that the action of microbes like Halomonas titanicae may bring about the total deterioration of the Titanic by 2030. While the bacteria have been identified as a potential danger to oil rigs and other man-made objects in the deep sea, they also have the potential to be used in bioremediation to accelerate the decomposition of shipwrecks littering the ocean floor.

Delftia tsuruhatensis is a Gram-negative, rod-shaped, catalase- and oxidase-positive, motile bacterium from the Comamonadaceae family. It was first isolated from a wastewater treatment plant in Japan in 2003. D. tsuruhatensis is an opportunistic and emergent pathogen. All documented human infections are healthcare-associated.

Delftia lacustris is a Gram-negative, nonfermentative, motile, rod-shaped bacterium from the family Comamonadaceae, which was isolated from mesotrophic lake water in Denmark. It has the ability to degrade peptidoglycan through chitinase and lysozyme activity.

Cupriavidus pauculus is a Gram-negative, nonfermentative, motile bacterium of the genus Cupriavidus and family Burkholderiaceae isolated from water from ultrafiltration systems and bottled mineral water. C. pauculus is associated with human infections.

<i>Akkermansia muciniphila</i> Species of bacterium

Akkermansia muciniphila is a human intestinal symbiont, isolated from human feces. It is a mucin-degrading bacterium belonging to the genus, Akkermansia, discovered in 2004 by Muriel Derrien and Willem de Vos at Wageningen University of the Netherlands. It belongs to the phylum Verrucomicrobiota and its type strain is MucT. It is under preliminary research for its potential association with metabolic disorders.

Acetivibrio straminisolvens is a moderately thermophilic, aerotolerant and cellulolytic bacterium. It is non-motile, spore-forming, straight or slightly curved rod, with type strain CSK1T. Its genome has been sequenced.

Azospirillum is a Gram-negative, microaerophilic, non-fermentative and nitrogen-fixing bacterial genus from the family of Rhodospirillaceae. Azospirillum bacteria can promote plant growth.

Chthonobacter is a genus of bacteria from the order Hyphomicrobiales with one valid species.

Herbihabitans rhizosphaerae is a bacterium from the genus Herbihabitans which has been isolated from rhizosphere soil from the plant Limonium sinense in Xinjiang, China.

Salisediminibacterium is a genus of Gram-positive bacteria from the family of Bacillaceae. The type species is Salisediminibacterium halotolerans.

Sphingobacterium olei is a Gram-stain-negative, rod-shaped, and non-motile bacterium. It was first isolated from oil-contaminated soil in Daqing oil field, China. S. olei has been found to be able to degrade herbicides quizalofop-p-ethyl and diclofop-methyl. Before a name was given, S. olei was designated as strain HAL-9T. The species name olei means "of oil" in Latin.

References

  1. Wen, Aimin; Fegan, Mark; Hayward, Chris; Chakraborty, Sukumar; Sly, Lindsay I. (1999). "Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov". International Journal of Systematic and Evolutionary Microbiology. 49 (2): 567–576. doi: 10.1099/00207713-49-2-567 . ISSN   1466-5026. PMID   10319477.
  2. 1 2 3 4 5 Parte, A.C. "Delftia". LPSN .
  3. Carro, Lorena; Mulas, Rebeca; Pastor-Bueis, Raquel; Blanco, Daniel; Terron, Arsenio; Gonzalez-Andres, Fernando; Peix, Alvaro; Velazquez, Encarna (1 June 2017). "Delftia rhizosphaerae sp. nov. isolated from the rhizosphere of Cistus ladanifer". International Journal of Systematic and Evolutionary Microbiology. 67 (6): 1957–1960. doi: 10.1099/ijsem.0.001892 . PMID   28629496.
  4. De Gusseme, Bart; Vanhaecke, Lynn; Verstraete, Willy; Boon, Nico (2011-02-01). "Degradation of acetaminophen by Delftia tsuruhatensis and Pseudomonas aeruginosa in a membrane bioreactor". Water Research. 45 (4): 1829–1837. doi:10.1016/j.watres.2010.11.040. ISSN   0043-1354. PMID   21167545.
  5. Wu, Wenyang; Huang, Haiying; Ling, Zhenmin; Yu, Zhengsheng; Jiang, Yiming; Liu, Pu; Li, Xiangkai (2016-01-01). "Genome sequencing reveals mechanisms for heavy metal resistance and polycyclic aromatic hydrocarbon degradation in Delftia lacustris strain LZ-C". Ecotoxicology. 25 (1): 234–247. doi:10.1007/s10646-015-1583-9. ISSN   1573-3017. PMID   26589947. S2CID   7203751.
  6. Shetty, Ameesha R.; de Gannes, Vidya; Obi, Chioma C.; Lucas, Susan; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Samuel; Peters, Linda; Mikhailova, Natalia; Teshima, Hazuki (2015-08-15). "Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4". Standards in Genomic Sciences. 10 (1): 55. doi: 10.1186/s40793-015-0041-x . ISSN   1944-3277. PMC   4572682 . PMID   26380642.
  7. Zhang, Li-li; He, Dan; Chen, Jian-meng; Liu, Yu (2010-07-15). "Biodegradation of 2-chloroaniline, 3-chloroaniline, and 4-chloroaniline by a novel strain Delftia tsuruhatensis H1". Journal of Hazardous Materials. 179 (1): 875–882. doi:10.1016/j.jhazmat.2010.03.086. ISSN   0304-3894. PMID   20417029.
  8. Leibeling, Sabine; Schmidt, Frank; Jehmlich, Nico; von Bergen, Martin; Müller, Roland H.; Harms, Hauke (2010-05-15). "Declining Capacity of Starving Delftia acidovorans MC1 to Degrade Phenoxypropionate Herbicides Correlates with Oxidative Modification of the Initial Enzyme". Environmental Science & Technology. 44 (10): 3793–3799. Bibcode:2010EnST...44.3793L. doi:10.1021/es903619j. ISSN   0013-936X. PMID   20397636.
  9. Liu, Yuling; Tie, Boqing; Li, Yuanxinglu; Lei, Ming; Wei, Xiangdong; Liu, Xiaoli; Du, Huihui (2018-11-15). "Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains". Ecotoxicology and Environmental Safety. 163: 223–229. doi:10.1016/j.ecoenv.2018.07.081. ISSN   0147-6513. PMID   30055387. S2CID   51905221.
  10. Johnston, Chad W.; Wyatt, Morgan A.; Li, Xiang; Ibrahim, Ashraf; Shuster, Jeremiah; Southam, Gordon; Magarvey, Nathan A. (2013). "Gold biomineralization by a metallophore from a gold-associated microbe". Nature Chemical Biology. 9 (4): 241–243. doi:10.1038/nchembio.1179. ISSN   1552-4469. PMID   23377039.