Deontic logic is the field of philosophical logic that is concerned with obligation, permission, and related concepts. Alternatively, a deontic logic is a formal system that attempts to capture the essential logical features of these concepts. It can be used to formalize imperative logic, or directive modality in natural languages. Typically, a deontic logic uses OA to mean it is obligatory that A (or it ought to be (the case) that A), and PA to mean it is permitted (or permissible) that A, which is defined as .
In natural language, the statement "You may go to the zoo OR the park" should be understood as instead of , as both options are permitted by the statement. When there are multiple agents involved in the domain of discourse, the deontic modal operator can be specified to each agent to express their individual obligations and permissions. For example, by using a subscript for agent , means that "It is an obligation for agent (to bring it about/make it happen) that ". Note that could be stated as an action by another agent; One example is "It is an obligation for Adam that Bob doesn't crash the car", which would be represented as , where B="Bob doesn't crash the car".
The term deontic is derived from the Ancient Greek : δέον, romanized: déon (gen.: δέοντος, déontos), meaning "that which is binding or proper."
In Georg Henrik von Wright's first system, obligatoriness and permissibility were treated as features of acts. Soon after this, it was found that a deontic logic of propositions could be given a simple and elegant Kripke-style semantics, and von Wright himself joined this movement. The deontic logic so specified came to be known as "standard deontic logic," often referred to as SDL, KD, or simply D. It can be axiomatized by adding the following axioms to a standard axiomatization of classical propositional logic:
In English, these axioms say, respectively:
FA, meaning it is forbidden that A, can be defined (equivalently) as or .
There are two main extensions of SDL that are usually considered. The first results by adding an alethic modal operator in order to express the Kantian claim that "ought implies can":
where . It is generally assumed that is at least a KT operator, but most commonly it is taken to be an S5 operator. In practical situations, obligations are usually assigned in anticipation of future events, in which case alethic possibilities can be hard to judge; Therefore, obligation assignments may be performed under the assumption of different conditions on different branches of timelines in the future, and past obligation assignments may be updated due to unforeseen developments that happened along the timeline.
The other main extension results by adding a "conditional obligation" operator O(A/B) read "It is obligatory that A given (or conditional on) B". Motivation for a conditional operator is given by considering the following ("Good Samaritan") case. It seems true that the starving and poor ought to be fed. But that the starving and poor are fed implies that there are starving and poor. By basic principles of SDL we can infer that there ought to be starving and poor! The argument is due to the basic K axiom of SDL together with the following principle valid in any normal modal logic:
If we introduce an intensional conditional operator then we can say that the starving ought to be fed only on the condition that there are in fact starving: in symbols O(A/B). But then the following argument fails on the usual (e.g. Lewis 73) semantics for conditionals: from O(A/B) and that A implies B, infer OB.
Indeed, one might define the unary operator O in terms of the binary conditional one O(A/B) as , where stands for an arbitrary tautology of the underlying logic (which, in the case of SDL, is classical).
The accessibility relation between possible world is interpreted as acceptability relations: is an acceptable world (viz. ) if and only if all the obligations in are fulfilled in (viz. ).
Alan R. Anderson (1959) shows how to define in terms of the alethic operator and a deontic constant (i.e. 0-ary modal operator) standing for some sanction (i.e. bad thing, prohibition, etc.): . Intuitively, the right side of the biconditional says that A's failing to hold necessarily (or strictly) implies a sanction.
In addition to the usual modal axioms (necessitation rule N and distribution axiom K) for the alethic operator , Anderson's deontic logic only requires one additional axiom for the deontic constant : , which means that there is alethically possible to fulfill all obligations and avoid the sanction. This version of the Anderson's deontic logic is equivalent to SDL.
However, when modal axiom T is included for the alethic operator (), it can be proved in Anderson's deontic logic that , which is not included in SDL. Anderson's deontic logic inevitably couples the deontic operator with the alethic operator , which can be problematic in certain cases.
An important problem of deontic logic is that of how to properly represent conditional obligations, e.g. If you smoke (s), then you ought to use an ashtray (a). It is not clear that either of the following representations is adequate:
Under the first representation it is vacuously true that if you commit a forbidden act, then you ought to commit any other act, regardless of whether that second act was obligatory, permitted or forbidden (Von Wright 1956, cited in Aqvist 1994). Under the second representation, we are vulnerable to the gentle murder paradox, where the plausible statements (1) if you murder, you ought to murder gently, (2) you do commit murder, and (3) to murder gently you must murder imply the less plausible statement: you ought to murder. Others argue that must in the phrase to murder gently you must murder is a mistranslation from the ambiguous English word (meaning either implies or ought). Interpreting must as implies does not allow one to conclude you ought to murder but only a repetition of the given you murder. Misinterpreting must as ought results in a perverse axiom, not a perverse logic. With use of negations one can easily check if the ambiguous word was mistranslated by considering which of the following two English statements is equivalent with the statement to murder gently you must murder: is it equivalent to if you murder gently it is forbidden not to murder or if you murder gently it is impossible not to murder ?
Some deontic logicians have responded to this problem by developing dyadic deontic logics, which contain binary deontic operators:
(The notation is modeled on that used to represent conditional probability.) Dyadic deontic logic escapes some of the problems of standard (unary) deontic logic, but it is subject to some problems of its own.[ example needed ]
Many other varieties of deontic logic have been developed, including non-monotonic deontic logics, paraconsistent deontic logics, dynamic deontic logics, and hyperintensional deontic logics.
Philosophers from the Indian Mimamsa school to those of Ancient Greece have remarked on the formal logical relations of deontic concepts [1] and philosophers from the late Middle Ages compared deontic concepts with alethic ones. [2]
In his Elementa juris naturalis (written between 1669 and 1671), Gottfried Wilhelm Leibniz notes the logical relations between the licitum (permitted), the illicitum (prohibited), the debitum (obligatory), and the indifferens (facultative) are equivalent to those between the possibile, the impossibile, the necessarium, and the contingens respectively. [3]
Ernst Mally, a pupil of Alexius Meinong, was the first to propose a formal system of deontic logic in his Grundgesetze des Sollens (1926) and he founded it on the syntax of Whitehead's and Russell's propositional calculus. Mally's deontic vocabulary consisted of the logical constants and , unary connective , and binary connectives and .
Mally defined , , and as follows:
Mally proposed five informal principles:
He formalized these principles and took them as his axioms:
From these axioms Mally deduced 35 theorems, many of which he rightly considered strange. Karl Menger showed that is a theorem and thus that the introduction of the ! sign is irrelevant and that A ought to be the case if A is the case. [4] After Menger, philosophers no longer considered Mally's system viable. Gert Lokhorst lists Mally's 35 theorems and gives a proof for Menger's theorem at the Stanford Encyclopedia of Philosophy under Mally's Deontic Logic.
The first plausible system of deontic logic was proposed by G. H. von Wright in his paper Deontic Logic in the philosophical journal Mind in 1951. (Von Wright was also the first to use the term "deontic" in English to refer to this kind of logic although Mally published the German paper Deontik in 1926.) Since the publication of von Wright's seminal paper, many philosophers and computer scientists have investigated and developed systems of deontic logic. Nevertheless, to this day deontic logic remains one of the most controversial and least agreed-upon areas of logic. G. H. von Wright did not base his 1951 deontic logic on the syntax of the propositional calculus as Mally had done, but was instead influenced by alethic modal logics, which Mally had not benefited from. In 1964, von Wright published A New System of Deontic Logic, which was a return to the syntax of the propositional calculus and thus a significant return to Mally's system. (For more on von Wright's departure from and return to the syntax of the propositional calculus, see Deontic Logic: A Personal View[ citation needed ] and A New System of Deontic Logic[ citation needed ], both by Georg Henrik von Wright.) G. H. von Wright's adoption of the modal logic of possibility and necessity for the purposes of normative reasoning was a return to Leibniz.
Although von Wright's system represented a significant improvement over Mally's, it raised a number of problems of its own. For example, Ross's paradox applies to von Wright's deontic logic, allowing us to infer from "It is obligatory that the letter is mailed" to "It is obligatory that either the letter is mailed or the letter is burned", which seems to imply it is permissible that the letter is burned. The Good Samaritan paradox also applies to his system, allowing us to infer from "It is obligatory to nurse the man who has been robbed" that "It is obligatory that the man has been robbed". Another major source of puzzlement is Chisholm's paradox, named after American philosopher and logician Roderick Chisholm. There is no formalisation in von Wright's system of the following claims that allows them to be both jointly satisfiable and logically independent:
Several extensions or revisions of Standard Deontic Logic have been proposed over the years, with a view to solve these and other puzzles and paradoxes (such as the Gentle Murderer and Free choice permission).
Deontic logic faces Jørgensen's dilemma. [5] This problem is best seen as a trilemma. The following three claims are incompatible:
Responses to this problem involve rejecting one of the three premises.
In propositional logic, modus ponens, also known as modus ponendo ponens, implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q.P is true. Therefore, Q must also be true."
Relevance logic, also called relevant logic, is a kind of non-classical logic requiring the antecedent and consequent of implications to be relevantly related. They may be viewed as a family of substructural or modal logics. It is generally, but not universally, called relevant logic by British and, especially, Australian logicians, and relevance logic by American logicians.
Understood in a narrow sense, philosophical logic is the area of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. Some theorists conceive philosophical logic in a wider sense as the study of the scope and nature of logic in general. In this sense, philosophical logic can be seen as identical to the philosophy of logic, which includes additional topics like how to define logic or a discussion of the fundamental concepts of logic. The current article treats philosophical logic in the narrow sense, in which it forms one field of inquiry within the philosophy of logic.
In logic, temporal logic is any system of rules and symbolism for representing, and reasoning about, propositions qualified in terms of time. It is sometimes also used to refer to tense logic, a modal logic-based system of temporal logic introduced by Arthur Prior in the late 1950s, with important contributions by Hans Kamp. It has been further developed by computer scientists, notably Amir Pnueli, and logicians.
Modal logic is a kind of logic used to represent statements about necessity and possibility. It plays a major role in philosophy and related fields as a tool for understanding concepts such as knowledge, obligation, and causation. For instance, in epistemic modal logic, the formula can be used to represent the statement that is known. In deontic modal logic, that same formula can represent that is a moral obligation. Modal logic considers the inferences that modal statements give rise to. For instance, most epistemic modal logics treat the formula as a tautology, representing the principle that only true statements can count as knowledge. However, this formula is not a tautology in deontic modal logic, since what ought to be true can be false.
Interpretability logics comprise a family of modal logics that extend provability logic to describe interpretability or various related metamathematical properties and relations such as weak interpretability, Π1-conservativity, cointerpretability, tolerance, cotolerance, and arithmetic complexities.
In mathematical logic, Löb's theorem states that in Peano arithmetic (PA) (or any formal system including PA), for any formula P, if it is provable in PA that "if P is provable in PA then P is true", then P is provable in PA. If Prov(P) means that the formula P is provable, we may express this more formally as
Begriffsschrift is a book on logic by Gottlob Frege, published in 1879, and the formal system set out in that book.
In logic, a normal modal logic is a set L of modal formulas such that L contains:
Kripke semantics is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André Joyal. It was first conceived for modal logics, and later adapted to intuitionistic logic and other non-classical systems. The development of Kripke semantics was a breakthrough in the theory of non-classical logics, because the model theory of such logics was almost non-existent before Kripke.
Ernst Mally was an Austrian analytic philosopher, initially affiliated with Alexius Meinong's Graz School of object theory. Mally was one of the founders of deontic logic and is mainly known for his contributions in that field of research. In metaphysics, he is known for introducing a distinction between two kinds of predication, better known as the dual predication approach.
Epistemic modal logic is a subfield of modal logic that is concerned with reasoning about knowledge. While epistemology has a long philosophical tradition dating back to Ancient Greece, epistemic logic is a much more recent development with applications in many fields, including philosophy, theoretical computer science, artificial intelligence, economics, and linguistics. While philosophers since Aristotle have discussed modal logic, and Medieval philosophers such as Avicenna, Ockham, and Duns Scotus developed many of their observations, it was C. I. Lewis who created the first symbolic and systematic approach to the topic, in 1912. It continued to mature as a field, reaching its modern form in 1963 with the work of Kripke.
A modal connective is a logical connective for modal logic. It is an operator which forms propositions from propositions. In general, a modal operator has the "formal" property of being non-truth-functional in the following sense: The truth-value of composite formulae sometimes depend on factors other than the actual truth-value of their components. In the case of alethic modal logic, a modal operator can be said to be truth-functional in another sense, namely, that of being sensitive only to the distribution of truth-values across possible worlds, actual or not. Finally, a modal operator is "intuitively" characterized by expressing a modal attitude about the proposition to which the operator is applied.
Formal ethics is a formal logical system for describing and evaluating the "form" as opposed to the "content" of ethical principles. Formal ethics was introduced by Harry J. Gensler, in part in his 1990 logic textbook Symbolic Logic: Classical and Advanced Systems, but was more fully developed and justified in his 1996 book Formal Ethics.
In mathematics and philosophy, Łukasiewicz logic is a non-classical, many-valued logic. It was originally defined in the early 20th century by Jan Łukasiewicz as a three-valued modal logic; it was later generalized to n-valued as well as infinitely-many-valued (ℵ0-valued) variants, both propositional and first order. The ℵ0-valued version was published in 1930 by Łukasiewicz and Alfred Tarski; consequently it is sometimes called the Łukasiewicz–Tarski logic. It belongs to the classes of t-norm fuzzy logics and substructural logics.
In logic and philosophy, S5 is one of five systems of modal logic proposed by Clarence Irving Lewis and Cooper Harold Langford in their 1932 book Symbolic Logic. It is a normal modal logic, and one of the oldest systems of modal logic of any kind. It is formed with propositional calculus formulas and tautologies, and inference apparatus with substitution and modus ponens, but extending the syntax with the modal operator necessarily and its dual possibly.
In modal logic, a classical modal logicL is any modal logic containing the duality of the modal operators
In modal logic, a regular modal logic is a modal logic containing the duality of the modal operators:
"Ought implies can" is an ethical formula ascribed to Immanuel Kant that claims an agent, if morally obliged to perform a certain action, must logically be able to perform it:
For if the moral law commands that we ought to be better human beings now, it inescapably follows that we must be capable of being better human beings.
The action to which the "ought" applies must indeed be possible under natural conditions.
The formal fallacy or the modal fallacy is a special type of fallacy that occurs in modal logic. It is the fallacy of placing a proposition in the wrong modal scope, most commonly confusing the scope of what is necessarily true. A statement is considered necessarily true if and only if it is impossible for the statement to be untrue and that there is no situation that would cause the statement to be false. Some philosophers further argue that a necessarily true statement must be true in all possible worlds.