Dichlorophenylphosphine

Last updated
Dichlorophenylphosphine
Dichlorophenylphosphine-2D-by-AHRLS-2012.png
Dichlorophenylphosphine-3D-balls-by-AHRLS-2012.png
Names
Preferred IUPAC name
Phenylphosphonous dichloride
Other names
Dichlorophenylphosphane
Phenylphosphorus dichloride
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.010.388 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 211-425-8
PubChem CID
RTECS number
  • TB2478000
UNII
UN number 2798
  • InChI=1S/C6H5Cl2P/c7-9(8)6-4-2-1-3-5-6/h1-5H Yes check.svgY
    Key: IMDXZWRLUZPMDH-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C6H5Cl2P/c7-9(8)6-4-2-1-3-5-6/h1-5H
    Key: IMDXZWRLUZPMDH-UHFFFAOYAO
  • ClP(Cl)c1ccccc1
Properties
C6H5Cl2P
Molar mass 178.98 g·mol−1
Appearancecolorless liquid
Odor acrid, pungent
Density 1.3190 g/mL
Melting point −51 °C (−60 °F; 222 K)
Boiling point 222 °C (432 °F; 495 K)
insoluble
Solubility miscible in benzene, CS2, chloroform
1.6030
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-skull.svg GHS-pictogram-exclam.svg
Danger
H290, H301, H302, H314, H335
P234, P260, P261, P264, P270, P271, P280, P301+P310, P301+P312, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P312, P321, P330, P363, P390, P403+P233, P404, P405, P501
NFPA 704 (fire diamond)
3
1
3
W
Flash point 101 °C (214 °F; 374 K)
159 °C (318 °F; 432 K)
Lethal dose or concentration (LD, LC):
200 mg/kg (oral, rat)
Safety data sheet (SDS) Fisher MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Dichlorophenylphosphine is an organophosphorus compound with the formula C6H5PCl2. This colourless viscous liquid is commonly used in the synthesis of organophosphines.

Dichlorophenylphosphine is commercially available. It may be prepared by an electrophilic substitution of benzene by phosphorus trichloride, catalyzed by aluminium chloride. [1] [2] The compound is an intermediate for the synthesis of other chemicals for instance dimethylphenylphosphine:

C6H5PCl2 + 2 CH3MgI → C6H5P(CH3)2 + 2 MgICl

Many tertiary phosphines can be prepared by this route. [3]

In the McCormack reaction dichlorophenylphosphine adds dienes to give the chlorophospholenium ring. [4]

McCormackRxn.png

Reductive coupling of the dichlorophosphine gives the cyclophosphine (PhP)5. [5]

Related Research Articles

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is a functional group with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

<span class="mw-page-title-main">Acyl halide</span> Oxoacid compound with an –OH group replaced by a halogen

In organic chemistry, an acyl halide is a chemical compound derived from an oxoacid by replacing a hydroxyl group with a halide group.

<span class="mw-page-title-main">Anisole</span> Organic compound (CH₃OC₆H₅) also named methoxybenzene

Anisole, or methoxybenzene, is an organic compound with the formula CH3OC6H5. It is a colorless liquid with a smell reminiscent of anise seed, and in fact many of its derivatives are found in natural and artificial fragrances. The compound is mainly made synthetically and is a precursor to other synthetic compounds. Structurally, it is an ether with a methyl and phenyl group attached. Anisole is a standard reagent of both practical and pedagogical value.

<span class="mw-page-title-main">Phosphonium</span> Family of polyatomic cations containing phosphorus

In chemistry, the term phosphonium describes polyatomic cations with the chemical formula PR+
4
. These cations have tetrahedral structures. The salts are generally colorless or take the color of the anions.

<span class="mw-page-title-main">Trimethylaluminium</span> Chemical compound

Trimethylaluminium is one of the simplest examples of an organoaluminium compound. Despite its name it has the formula Al2(CH3)6 (abbreviated as Al2Me6 or TMA), as it exists as a dimer. This colorless liquid is pyrophoric. It is an industrially important compound, closely related to triethylaluminium.

<span class="mw-page-title-main">Phosphorus tribromide</span> Chemical compound

Phosphorus tribromide is a colourless liquid with the formula PBr3. The liquid fumes in moist air due to hydrolysis and has a penetrating odour. It is used in the laboratory for the conversion of alcohols to alkyl bromides.

<span class="mw-page-title-main">Phosphorus triiodide</span> Chemical compound

Phosphorus triiodide (PI3) is an inorganic compound with the formula PI3. A red solid, it is a common misconception that PI3 is too unstable to be stored; it is, in fact, commercially available. It is widely used in organic chemistry for converting alcohols to alkyl iodides. It is also a powerful reducing agent. Note that phosphorus also forms a lower iodide, P2I4, but the existence of PI5 is doubtful at room temperature.

Organophosphorus chemistry is the scientific study of the synthesis and properties of organophosphorus compounds, which are organic compounds containing phosphorus. They are used primarily in pest control as an alternative to chlorinated hydrocarbons that persist in the environment. Some organophosphorus compounds are highly effective insecticides, although some are extremely toxic to humans, including sarin and VX nerve agents.

<span class="mw-page-title-main">Grignard reagent</span> Organometallic compounds used in organic synthesis

A Grignard reagent or Grignard compound is a chemical compound with the general formula R−Mg−X, where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride Cl−Mg−CH3 and phenylmagnesium bromide (C6H5)−Mg−Br. They are a subclass of the organomagnesium compounds.

Organophosphines are organophosphorus compounds with the formula PRnH3−n, where R is an organic substituent. These compounds can be classified according to the value of n: primary phosphines (n = 1), secondary phosphines (n = 2), tertiary phosphines (n = 3). All adopt pyramidal structures. Organophosphines are generally colorless, lipophilic liquids or solids. The parent of the organophosphines is phosphine (PH3).

<span class="mw-page-title-main">4-Bromoanisole</span> Chemical compound

4-Bromoanisole is the organobromine compound with the formula CH3OC6H4Br. It is colorless liquid with a pleasant smell similar to that of anise seed. It is one of three isomers of bromoanisole, the others being 3-bromoanisole and 2-bromoanisole. It is the precursor to many 4-anisyl derivatives.

<span class="mw-page-title-main">Triphenyl phosphite</span> Chemical compound

Triphenyl phosphite is the organophosphorus compound with the formula P(OC6H5)3. It is a colourless viscous liquid.

<span class="mw-page-title-main">Trimethyl phosphite</span> Chemical compound

Trimethyl phosphite is an organophosphorus compound with the formula P(OCH3)3, often abbreviated P(OMe)3. It is a colorless liquid with a highly pungent odor. It is the simplest phosphite ester and finds used as a ligand in organometallic chemistry and as a reagent in organic synthesis. The molecule features a pyramidal phosphorus(III) center bound to three methoxy groups.

<span class="mw-page-title-main">Chlorodiphenylphosphine</span> Chemical compound

Chlorodiphenylphosphine is an organophosphorus compound with the formula (C6H5)2PCl, abbreviated Ph2PCl. It is a colourless oily liquid with a pungent odor that is often described as being garlic-like and detectable even in the ppb range. It is useful reagent for introducing the Ph2P group into molecules, which includes many ligands. Like other halophosphines, Ph2PCl is reactive with many nucleophiles such as water and easily oxidized even by air.

Organoiron chemistry is the chemistry of iron compounds containing a carbon-to-iron chemical bond. Organoiron compounds are relevant in organic synthesis as reagents such as iron pentacarbonyl, diiron nonacarbonyl and disodium tetracarbonylferrate. While iron adopts oxidation states from Fe(−II) through to Fe(VII), Fe(IV) is the highest established oxidation state for organoiron species. Although iron is generally less active in many catalytic applications, it is less expensive and "greener" than other metals. Organoiron compounds feature a wide range of ligands that support the Fe-C bond; as with other organometals, these supporting ligands prominently include phosphines, carbon monoxide, and cyclopentadienyl, but hard ligands such as amines are employed as well.

<span class="mw-page-title-main">Diethylphosphite</span> Chemical compound

Diethyl phosphite is the organophosphorus compound with the formula (C2H5O)2P(O)H. It is a popular reagent for generating other organophosphorus compounds, exploiting the high reactivity of the P-H bond. Diethyl phosphite is a colorless liquid. The molecule is tetrahedral.

In organophosphorus chemistry, an aminophosphine is a compound with the formula R3−nP(NR2)n where R = H or an organic substituent, and n = 0, 1, 2. At one extreme, the parent H2PNH2 is lightly studied and fragile, but at the other extreme tris(dimethylamino)phosphine (P(NMe2)3) is commonly available. Intermediate members are known, such as Ph2PN(H)Ph. These compounds are typically colorless and reactive toward oxygen. They have pyramidal geometry at phosphorus.

<span class="mw-page-title-main">Cyanoethylation</span>

Cyanoethylation is a process for the attachment of CH2CH2CN group to another organic substrate. The method is used in the synthesis of organic compounds.

Hydroxymethylation is a chemical reaction that installs the CH2OH group. The transformation can be implemented in many ways and applies to both industrial and biochemical processes.

References

  1. B. Buchner; L. B. Lockhart, Jr. (1951). "Phenyldichlorophosphine". Organic Syntheses. 31: 88. doi:10.15227/orgsyn.031.0088.
  2. Engel, Robert; Cohen, Jaime-Lee Iolani (2004). Synthesis of Carbon–Phosphorus Bonds. CRC. ISBN   0-8493-1617-0.
  3. P. Loeliger E. Flückiger (1976). "Sulfide Contraction via Alkylative Coupling: 3-Methyl-2,4-heptanedione". Organic Syntheses. 55: 127. doi:10.15227/orgsyn.055.0127.
  4. W. B. McCormack (1963). "3-Methyl-1-Phenylphospholene oxide". Org. Synth. 43: 73. doi:10.15227/orgsyn.043.0073.
  5. Marianne Baudler, Klaus Glinka (1993). "Monocyclic and Polycyclic Phosphines". Chem. Rev. 93: 1623–1667. doi:10.1021/cr00020a010.