Diiodotyrosine

Last updated
Diiodotyrosine
Diiodotyrosine.svg
Diiodotyrosine zwitterion 3D ball.png
Names
Preferred IUPAC name
(2S)-2-Amino-3-(4-hydroxy-3,5-diiodophenyl)propanoic acid
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.005.539 OOjs UI icon edit-ltr-progressive.svg
MeSH Diiodotyrosine
PubChem CID
UNII
  • InChI=1S/C9H9I2NO3/c10-5-1-4(2-6(11)8(5)13)3-7(12)9(14)15/h1-2,7,13H,3,12H2,(H,14,15)/t7-/m0/s1 X mark.svgN
    Key: NYPYHUZRZVSYKL-ZETCQYMHSA-N X mark.svgN
  • InChI=1/C9H9I2NO3/c10-5-1-4(2-6(11)8(5)13)3-7(12)9(14)15/h1-2,7,13H,3,12H2,(H,14,15)/t7-/m0/s1
    Key: NYPYHUZRZVSYKL-ZETCQYMHBZ
  • Ic1cc(cc(I)c1O)C[C@@H](C(=O)O)N
Properties
C9H9I2NO3
Molar mass 432.982 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Diiodotyrosine (DIT) is a precursor in the production of thyroid hormone, and results from iodization of monoiodotyrosine at the other meta- position on the phenol ring.

Contents

Function

DIT is a modulator of the enzyme thyroid peroxidase (which is involved in the production of thyroid hormones). [1]

Triiodothyronine is formed, when diiodotyrosine is combined with monoiodotyrosine (in the colloid of the thyroid follicle).

Two molecules of DIT combine to make the thyroid hormone thyroxine ('T4' and 'T3').

See also

Related Research Articles

<span class="mw-page-title-main">Thyroid</span> Endocrine gland in the neck; secretes hormones that influence metabolism

The thyroid, or thyroid gland, is an endocrine gland in vertebrates. In humans, it is in the neck and consists of two connected lobes. The lower two thirds of the lobes are connected by a thin band of tissue called the isthmus (pl.: isthmi). The thyroid gland is a butterfly-shaped gland located in the neck below the Adam's apple. Microscopically, the functional unit of the thyroid gland is the spherical thyroid follicle, lined with follicular cells (thyrocytes), and occasional parafollicular cells that surround a lumen containing colloid. The thyroid gland secretes three hormones: the two thyroid hormones – triiodothyronine (T3) and thyroxine (T4) – and a peptide hormone, calcitonin. The thyroid hormones influence the metabolic rate and protein synthesis and growth and development in children. Calcitonin plays a role in calcium homeostasis. Secretion of the two thyroid hormones is regulated by thyroid-stimulating hormone (TSH), which is secreted from the anterior pituitary gland. TSH is regulated by thyrotropin-releasing hormone (TRH), which is produced by the hypothalamus.

<span class="mw-page-title-main">Hypothyroidism</span> Insufficient production of thyroid hormones by the thyroid gland

Hypothyroidism is a disorder of the endocrine system in which the thyroid gland does not produce enough thyroid hormones. It can cause a number of symptoms, such as poor ability to tolerate cold, extreme fatigue, muscle aches, constipation, slow heart rate, depression, and weight gain. Occasionally there may be swelling of the front part of the neck due to goitre. Untreated cases of hypothyroidism during pregnancy can lead to delays in growth and intellectual development in the baby or congenital iodine deficiency syndrome.

<span class="mw-page-title-main">Triiodothyronine</span> Chemical compound

Triiodothyronine, also known as T3, is a thyroid hormone. It affects almost every physiological process in the body, including growth and development, metabolism, body temperature, and heart rate.

<span class="mw-page-title-main">Hashimoto's thyroiditis</span> Autoimmune disease

Hashimoto's thyroiditis, also known as chronic lymphocytic thyroiditis and Hashimoto's disease, is an autoimmune disease in which the thyroid gland is gradually destroyed. A slightly broader term is autoimmune thyroiditis, identical other than that it is also used to describe a similar condition without a goiter.

ATC code H03Thyroid therapy is a therapeutic subgroup of the Anatomical Therapeutic Chemical Classification System, a system of alphanumeric codes developed by the World Health Organization (WHO) for the classification of drugs and other medical products. Subgroup H03 is part of the anatomical group H Systemic hormonal preparations, excluding sex hormones and insulins.

<span class="mw-page-title-main">Thyroid peroxidase</span> Enzyme expressed mainly in the thyroid gland

Thyroid peroxidase, also called thyroperoxidase (TPO), thyroid specific peroxidase or iodide peroxidase, is an enzyme expressed mainly in the thyroid where it is secreted into colloid. Thyroid peroxidase oxidizes iodide ions to form iodine atoms for addition onto tyrosine residues on thyroglobulin for the production of thyroxine (T4) or triiodothyronine (T3), the thyroid hormones. In humans, thyroperoxidase is encoded by the TPO gene.

<span class="mw-page-title-main">Thyroid disease</span> Medical condition

Thyroid disease is a medical condition that affects the function of the thyroid gland. The thyroid gland is located at the front of the neck and produces thyroid hormones that travel through the blood to help regulate many other organs, meaning that it is an endocrine organ. These hormones normally act in the body to regulate energy use, infant development, and childhood development.

<span class="mw-page-title-main">Carbimazole</span> Medication used for hyperthyroidism

Carbimazole (brand names Neo-Mercazole, Anti-Thyrox, etc.) is used to treat hyperthyroidism. Carbimazole is a pro-drug as after absorption it is converted to the active form, methimazole. Methimazole prevents thyroid peroxidase enzyme from iodinating and coupling the tyrosine residues on thyroglobulin, hence reducing the production of the thyroid hormones T3 and T4 (thyroxine).

<span class="mw-page-title-main">Thyrotropin receptor</span> Mammalian protein found in Homo sapiens

The thyrotropin receptor is a receptor that responds to thyroid-stimulating hormone and stimulates the production of thyroxine (T4) and triiodothyronine (T3). The TSH receptor is a member of the G protein-coupled receptor superfamily of integral membrane proteins and is coupled to the Gs protein.

<span class="mw-page-title-main">Thyroid dyshormonogenesis</span> Medical condition

Thyroid dyshormonogenesis is a rare condition due to genetic defects in the synthesis of thyroid hormones.

An antithyroid agent is a hormone inhibitor acting upon thyroid hormones.

In enzymology, a diiodotyrosine transaminase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Dual oxidase 2</span> Protein-coding gene in the species Homo sapiens

Dual oxidase 2, also known as DUOX2 or ThOX2, is an enzyme that in humans is encoded by the DUOX2 gene. Dual oxidase is an enzyme that was first identified in the mammalian thyroid gland. In humans, two isoforms are found; hDUOX1 and hDUOX2. The protein location is not exclusive to thyroid tissue; hDUOX1 is prominent in airway epithelial cells and hDUOX2 in the salivary glands and gastrointestinal tract.

<span class="mw-page-title-main">Dual oxidase 1</span> Protein-coding gene in the species Homo sapiens

Dual oxidase 1, also known as DUOX1 or ThOX1, is an enzyme which in humans is encoded by the DUOX1 gene. DUOX1 was first identified in the mammalian thyroid gland. In humans, two isoforms are found; hDUOX1 and hDUOX2. Human DUOX protein localization is not exclusive to thyroid tissue; hDUOX1 is prominent in airway epithelial cells and hDUOX2 in the salivary glands and gastrointestinal tract.

<span class="mw-page-title-main">Thyroid hormones</span> Hormones produced by the thyroid gland

Thyroid hormones are any hormones produced and released by the thyroid gland, namely triiodothyronine (T3) and thyroxine (T4). They are tyrosine-based hormones that are primarily responsible for regulation of metabolism. T3 and T4 are partially composed of iodine, derived from food. A deficiency of iodine leads to decreased production of T3 and T4, enlarges the thyroid tissue and will cause the disease known as simple goitre.

<span class="mw-page-title-main">Iodotyrosine deiodinase</span> Protein-coding gene in the species Homo sapiens

Iodotyrosine deiodinase, also known as iodotyrosine dehalogenase 1, is a type of deiodinase enzyme that scavenges iodide by removing it from iodinated tyrosine residues in the thyroid gland. These iodinated tyrosines are produced during thyroid hormone biosynthesis. The iodide that is scavenged by iodotyrosine deiodinase is necessary to again synthesize the thyroid hormones. After synthesis, the thyroid hormones circulate through the body to regulate metabolic rate, protein expression, and body temperature. Iodotyrosine deiodinase is thus necessary to keep levels of both iodide and thyroid hormones in balance.

<span class="mw-page-title-main">3-Iodotyrosine</span> Chemical compound

3-Iodotyrosine is an intermediate in the synthesis of thyroid hormones which is derived from iodination of tyrosine at the meta-position of the benzene ring. One unit can combine with diiodotyrosine to form triiodothyronine, as occurs in the colloid of the thyroid follicle. Two units can combine to form 3,3'-diiodothyronine.

<span class="mw-page-title-main">Iodine in biology</span> Use of Iodine by organisms

Iodine is an essential trace element in biological systems. It has the distinction of being the heaviest element commonly needed by living organisms as well as the second-heaviest known to be used by any form of life. It is a component of biochemical pathways in organisms from all biological kingdoms, suggesting its fundamental significance throughout the evolutionary history of life.

Organification is a biochemical process that takes place in the thyroid gland. It is the incorporation of iodine into thyroglobulin for the production of thyroid hormone, a step done after the oxidation of iodide by the enzyme thyroid peroxidase (TPO). Since iodine is an inorganic compound, and is being attached to thyroglobulin, a protein, the process is termed as "organification of iodine".

Antithyroid autoantibodies (or simply antithyroid antibodies) are autoantibodies targeted against one or more components on the thyroid. The most clinically relevant anti-thyroid autoantibodies are anti-thyroid peroxidase antibodies (anti-TPO antibodies, TPOAb), thyrotropin receptor antibodies (TRAb) and thyroglobulin antibodies (TgAb). TRAb's are subdivided into activating, blocking and neutral antibodies, depending on their effect on the TSH receptor. Anti-sodium/iodide (Anti–Na+/I) symporter antibodies are a more recent discovery and their clinical relevance is still unknown. Graves' disease and Hashimoto's thyroiditis are commonly associated with the presence of anti-thyroid autoantibodies. Although there is overlap, anti-TPO antibodies are most commonly associated with Hashimoto's thyroiditis and activating TRAb's are most commonly associated with Graves' disease. Thyroid microsomal antibodies were a group of anti-thyroid antibodies; they were renamed after the identification of their target antigen (TPO).

References

  1. Dème D, Fimiani E, Pommier J, Nunez J (February 1975). "Free diiodotyrosine effects on protein iodination and thyroid hormone synthesis catalyzed by thyroid peroxidase". Eur. J. Biochem. 51 (2): 329–36. doi: 10.1111/j.1432-1033.1975.tb03932.x . PMID   1149735.