Dinoflagellate luciferase

Last updated
Dinoflagellate luciferase
Identifiers
EC no. 1.13.12.18
CAS no. 303183-71-3
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Dinoflagellate luciferase (EC 1.13.12.18, Gonyaulax luciferase) is a specific luciferase, an enzyme with systematic name dinoflagellate-luciferin:oxygen 132-oxidoreductase. [1] [2] [3] [4] [5] [6]

Contents

dinoflagellate luciferin + O2 oxidized dinoflagellate luciferin + H2O + hnu

Mechanism of Reaction

The EC number of dinoflagellate luciferase is 1.13.12.18. This number denotes that dinoflagellate luciferase is an oxidoreductase that acts on single donors with incorporation of molecular oxygen (oxygenases) that are not necessarily derived from O2, with incorporation of one atom of oxygen (internal monooxygenases or internal mixed-function oxidases). [7]

Structure

Dinoflagellate luciferase is a single protein with three luciferase domains and an N-terminal domain. [6] The three domains have been shown to be 1.8-A crystal structure that contain beta barrel pocketa that act as active sites with each domain preceded by a regulatory three helix bundle. [6] These helical bundles contain important histidine residues that play a role in the pH regulation of dinoflagellate luciferase activity. [6] Specifically, the presence of N-terminal intramolecularly conserved histidine residues are shown to be responsible for the loss of activity of the enzyme at high pH. [8] Protonation of these histidine residues alters the conformation of each domain to allow the substrate luciferin to enter the enlarged pocket. This conformational change must occur in order to provide access and space for the ligand to enter the active site. [6] At pH 8, the histidine residues remain unprotonated, interacting with a network of hydrogen bonds that block substrate access to the active site. [6] This blockage is overcome by protonation of histidine residues or by experimental replacement of histidine residues with alanine residues. [6] Realistically, alanine replacement does not occur spontaneously; however, this experimental result provides further evidence that the larger histidine residues block access to the active site of the enzyme. The N-terminal domain is conserved between dinoflagellate luciferase and luciferin binding proteins. This region may be where luciferin binding proteins interact with luciferase in order to allow the ligand, usually luciferin, to enter the active site. [9]

Reaction Conditions

Dinoflagellate luciferase is active in slightly acidic environments but in most cases requires the luciferin binding protein (LBP) to unbind from the dinoflagellate luciferin substrate; however, LBP binds luciferin at neutral to alkaline conditions. [10] Although the primary mechanism is unknown, voltage-gated ion channels on scintillon membranes open, allowing an influx of protons to enter the organelle lowering the pH sufficiently for dinoflagellate luciferase to activate. [11] G-protein coupled receptors and calcium ions also play a role in stimulating bioluminescence. [12]

Applications

Dinoflagellate luciferase is found in bioluminescent dinoflagellates, eukaryotic protists that are found in ocean surface waters. [13] Dinoflagellate luciferase allows these organisms to emit blue light (max 475 nm) after stimulation. [14] The light produced is theorized to act as a defense against predators or lure for prey. [15] These organisms utilize scintillons which are specialized organelles that project from the cytoplasm into the acidic vacuole to produce this light. [16] This is where the dinoflagellate luciferase enzyme is contained.

Related Research Articles

<span class="mw-page-title-main">Bioluminescence</span> Emission of light by a living organism

Bioluminescence is the production and emission of light by living organisms. It is a form of chemiluminescence. Bioluminescence occurs widely in marine vertebrates and invertebrates, as well as in some fungi, microorganisms including some bioluminescent bacteria, and terrestrial arthropods such as fireflies. In some animals, the light is bacteriogenic, produced by symbiotic bacteria such as those from the genus Vibrio; in others, it is autogenic, produced by the animals themselves.

<span class="mw-page-title-main">Luciferase</span> Enzyme family

Luciferase is a generic term for the class of oxidative enzymes that produce bioluminescence, and is usually distinguished from a photoprotein. The name was first used by Raphaël Dubois who invented the words luciferin and luciferase, for the substrate and enzyme, respectively. Both words are derived from the Latin word lucifer, meaning "lightbearer", which in turn is derived from the Latin words for "light" (lux) and "to bring or carry" (ferre).

<span class="mw-page-title-main">Luciferin</span> Class of light-emitting chemical compounds

Luciferin is a generic term for the light-emitting compound found in organisms that generate bioluminescence. Luciferins typically undergo an enzyme-catalyzed reaction with molecular oxygen. The resulting transformation, which usually involves splitting off a molecular fragment, produces an excited state intermediate that emits light upon decaying to its ground state. The term may refer to molecules that are substrates for both luciferases and photoproteins.

<i>Noctiluca scintillans</i> Bioluminescent, marine dinoflagellate

Noctiluca scintillans is a marine species of dinoflagellate that can exist in a green or red form, depending on the pigmentation in its vacuoles. It can be found worldwide, but its geographical distribution varies depending on whether it is green or red. This unicellular microorganism is known for its ability to bioluminesce, giving the water a bright blue glow seen at night. However, blooms of this species can be responsible for environmental hazards, such as toxic red tides. They may also be an indicator of anthropogenic eutrophication.

<span class="mw-page-title-main">Aequorin</span> Calcium-activated photoprotein

Aequorin is a calcium-activated photoprotein isolated from the hydrozoan Aequorea victoria. Its bioluminescence was studied decades before the protein was isolated from the animal by Osamu Shimomura in 1962. In the animal, the protein occurs together with the green fluorescent protein to produce green light by resonant energy transfer, while aequorin by itself generates blue light.

Catechol oxidase is a copper oxidase that contains a type 3 di-copper cofactor and catalyzes the oxidation of ortho-diphenols into ortho-quinones coupled with the reduction of molecular oxygen to water. It is present in a variety of species of plants and fungi including Ipomoea batatas and Camellia sinensis. Metalloenzymes with type 3 copper centers are characterized by their ability to reversibly bind dioxygen at ambient conditions. In plants, catechol oxidase plays a key role in enzymatic browning by catalyzing the oxidation of catechol to o-quinone in the presence of oxygen, which can rapidly polymerize to form the melanin that grants damaged fruits their dark brown coloration.

<span class="mw-page-title-main">Firefly luciferase</span>

Firefly luciferase is the light-emitting enzyme responsible for the bioluminescence of fireflies and click beetles. The enzyme catalyses the oxidation of firefly luciferin, requiring oxygen and ATP. Because of the requirement of ATP, firefly luciferases have been used extensively in biotechnology.

<span class="mw-page-title-main">Bioluminescence imaging</span>

Bioluminescence imaging (BLI) is a technology developed over the past decades (1990's and onward). that allows for the noninvasive study of ongoing biological processes Recently, bioluminescence tomography (BLT) has become possible and several systems have become commercially available. In 2011, PerkinElmer acquired one of the most popular lines of optical imaging systems with bioluminescence from Caliper Life Sciences.

A photocyte is a cell that specializes in catalyzing enzymes to produce light (bioluminescence). Photocytes typically occur in select layers of epithelial tissue, functioning singly or in a group, or as part of a larger apparatus. They contain special structures termed as photocyte granules. These specialized cells are found in a range of multicellular animals including ctenophora, coelenterates (cnidaria), annelids, arthropoda and fishes. Although some fungi are bioluminescent, they do not have such specialized cells.

In enzymology, a Cypridina-luciferin 2-monooxygenase (EC 1.13.12.6) is an enzyme that catalyzes the chemical reaction

In enzymology, an Oplophorus-luciferin 2-monooxygenase, also known as Oplophorus luciferase is a luciferase, an enzyme, from the deep-sea shrimp Oplophorus gracilirostris [2], belonging to a group of coelenterazine luciferases. Unlike other luciferases, it has a broader substrate specificity [3,4,6] and can also bind to bisdeoxycoelenterazine efficiently [3,4]. It is the third example of a luciferase to be purified in lab [2]. The systematic name of this enzyme class is Oplophorus-luciferin:oxygen 2-oxidoreductase (decarboxylating). This enzyme is also called Oplophorus luciferase.

<span class="mw-page-title-main">Renilla-luciferin 2-monooxygenase</span>

Renilla-luciferin 2-monooxygenase, Renilla luciferase, or RLuc, is a bioluminescent enzyme found in Renilla reniformis, belonging to a group of coelenterazine luciferases. Of this group of enzymes, the luciferase from Renilla reniformis has been the most extensively studied, and due to its bioluminescence requiring only molecular oxygen, has a wide range of applications, with uses as a reporter gene probe in cell culture, in vivo imaging, and various other areas of biological research. Recently, chimeras of RLuc have been developed and demonstrated to be the brightest luminescent proteins to date, and have proved effective in both noninvasive single-cell and whole body imaging.

<span class="mw-page-title-main">Arginine decarboxylase</span>

The enzyme Acid-Induced Arginine Decarboxylase (AdiA), also commonly referred to as arginine decarboxylase, catalyzes the conversion of L-arginine into agmatine and carbon dioxide. The process consumes a proton in the decarboxylation and employs a pyridoxal-5'-phosphate (PLP) cofactor, similar to other enzymes involved in amino acid metabolism, such as ornithine decarboxylase and glutamine decarboxylase. It is found in bacteria and virus, though most research has so far focused on forms of the enzyme in bacteria. During the AdiA catalyzed decarboxylation of arginine, the necessary proton is consumed from the cell cytoplasm which helps to prevent the over-accumulation of protons inside the cell and serves to increase the intracellular pH. Arginine decarboxylase is part of an enzymatic system in Escherichia coli, Salmonella Typhimurium, and methane-producing bacteria Methanococcus jannaschii that makes these organisms acid resistant and allows them to survive under highly acidic medium.

<span class="mw-page-title-main">USP20</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxyl-terminal hydrolase 20 is an enzyme that in humans is encoded by the USP20 gene.

Photoproteins are a type of enzyme, made of protein, from bioluminescent organisms. They add to the function of the luciferins whose usual light-producing reaction is catalyzed by the enzyme luciferase.

<span class="mw-page-title-main">John Woodland Hastings</span>

John Woodland "Woody" Hastings, was a leader in the field of photobiology, especially bioluminescence, and was one of the founders of the field of circadian biology. He was the Paul C. Mangelsdorf Professor of Natural Sciences and Professor of Molecular and Cellular Biology at Harvard University. He published over 400 papers and co-edited three books.

<i>Lingulodinium polyedra</i> Species of single-celled organism

Lingulodinium polyedra is a species of motile photosynthetic dinoflagellates. L. polyedra are often the cause of red tides in southern California, leading to bioluminescent displays on beaches at night.

Atrolysin A is an enzyme that is one of six hemorrhagic toxins found in the venom of western diamondback rattlesnake. This endopeptidase has a length of 419 amino acid residues. The metalloproteinase disintegrin-like domain and the cysteine-rich domain of the enzyme are responsible for the enzyme's hemorrhagic effects on organisms via inhibition of platelet aggregation.

<span class="mw-page-title-main">Bioluminescent bacteria</span>

Bioluminescent bacteria are light-producing bacteria that are predominantly present in sea water, marine sediments, the surface of decomposing fish and in the gut of marine animals. While not as common, bacterial bioluminescence is also found in terrestrial and freshwater bacteria. These bacteria may be free living or in symbiosis with animals such as the Hawaiian Bobtail squid or terrestrial nematodes. The host organisms provide these bacteria a safe home and sufficient nutrition. In exchange, the hosts use the light produced by the bacteria for camouflage, prey and/or mate attraction. Bioluminescent bacteria have evolved symbiotic relationships with other organisms in which both participants benefit close to equally. Another possible reason bacteria use luminescence reaction is for quorum sensing, an ability to regulate gene expression in response to bacterial cell density.

<span class="mw-page-title-main">Scintillon</span>

Scintillons are small structures in cytoplasm that produce light. Among bioluminescent organisms, only dinoflagellates have scintillons.

References

  1. Dunlap JC, Hastings JW (October 1981). "The biological clock in Gonyaulax controls luciferase activity by regulating turnover". The Journal of Biological Chemistry. 256 (20): 10509–18. doi: 10.1016/S0021-9258(19)68651-5 . PMID   7197271.
  2. Morse D, Pappenheimer AM, Hastings JW (July 1989). "Role of a luciferin-binding protein in the circadian bioluminescent reaction of Gonyaulax polyedra". The Journal of Biological Chemistry. 264 (20): 11822–6. doi: 10.1016/S0021-9258(18)80139-9 . PMID   2745419.
  3. Bae YM, Hastings JW (October 1994). "Cloning, sequencing and expression of dinoflagellate luciferase DNA from a marine alga, Gonyaulax polyedra". Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 1219 (2): 449–56. doi:10.1016/0167-4781(94)90071-x. PMID   7918642.
  4. Li L (2000). "Gonyaulax luciferase: gene structure, protein expression, and purification from recombinant sources". Bioluminescence and Chemiluminescence Part C. Methods in Enzymology. Vol. 305. pp. 249–58. doi:10.1016/s0076-6879(00)05492-6. ISBN   9780121822064. PMID   10812605.
  5. Morse D, Mittag M (2000). "Dinoflagellate luciferin-binding protein". Bioluminescence and Chemiluminescence Part C. Methods in Enzymology. Vol. 305. pp. 258–76. doi:10.1016/s0076-6879(00)05493-8. ISBN   9780121822064. PMID   10812606.
  6. 1 2 3 4 5 6 7 Schultz LW, Liu L, Cegielski M, Hastings JW (February 2005). "Crystal structure of a pH-regulated luciferase catalyzing the bioluminescent oxidation of an open tetrapyrrole". Proceedings of the National Academy of Sciences of the United States of America. 102 (5): 1378–83. Bibcode:2005PNAS..102.1378S. doi: 10.1073/pnas.0409335102 . PMC   547824 . PMID   15665092.
  7. Embl-Ebi. (n.d.). Intenz. Intenz - Rules on enzyme classification. Retrieved October 9, 2021, from https://www.ebi.ac.uk/intenz/rules.jsp#scheme1.
  8. Li, L., Liu, L., Hong, R., Robertson, D., & Hastings, J. W. (2001). N-terminal intramolecularly conserved histidine residues of three domains in Gonyaulax luciferase are responsible for loss of activity in the alkaline region. Biochemistry, 40(6), 1844–1849. https://doi.org/10.1021/bi002094v
  9. Okamoto OK, Liu L, Robertson DL, Hastings JW (Dec 2001). "Members of a dinoflagellate luciferase gene family differ in synonymous substitution rates". Biochemistry. 40 (51): 15862–68. CiteSeerX 10.1.1.494.3563. doi:10.1021/bi011651q. PMID 11747464.
  10. Fogel M, Schmitter RE, Hastings JW. On the physical identity of scintillons: bioluminescent particles in Gonyaulax polyedra. J Cell Sci. 1972 Jul;11(1):305-17. PMID 4341991.
  11. Chen, A. K., Latz, M. I., Sobolewski, P., & Frangos, J. A. (2007). Evidence for the role of G-proteins in flow stimulation of dinoflagellate bioluminescence. American journal of physiology. Regulatory, integrative and comparative physiology, 292(5), R2020–R2027. https://doi.org/10.1152/ajpregu.00649.2006
  12. von Dassow, P., & Latz, M. I. (2002). The role of Ca(2+) in stimulated bioluminescence of the dinoflagellate Lingulodinium polyedrum. The Journal of experimental biology, 205(Pt 19), 2971–2986.
  13. Tett, P. (1971). The Relation between Dinoflagellates and the Bioluminescence of Sea Water. Journal of the Marine Biological Association of the United Kingdom, 51(1), 183-206. doi:10.1017/S002531540000655X
  14. Nakamura, H., Kishi, Y., Shimomura, O., Morse, D., & Hastings, J. W. (1989). Structure of dinoflagellate luciferin and its enzymic and nonenzymic air-oxidation products. Journal of the American Chemical Society, 111(19), 7607–7611. https://doi.org/10.1021/ja00201a050
  15. Marcinko, C. L. J., Painter, S. C., Martin, A. P., & Allen, J. T. (2013). A review of the measurement and modelling of Dinoflagellate bioluminescence. Progress in Oceanography, 109, 117–129. https://doi.org/10.1016/j.pocean.2012.10.008
  16. Valiadi, M., & Iglesias-Rodriguez, D. (2013). Understanding Bioluminescence in Dinoflagellates-How Far Have We Come?. Microorganisms, 1(1), 3–25. https://doi.org/10.3390/microorganisms1010003