Drosophila tristis

Last updated

Drosophila tristis
Drosophila tristis.jpg
Drosophila tristis Netherlands
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Subgenus:
Species subgroup:
Species:
D. tristis

Fallén, 1823
Binomial name
Drosophila tristis

Drosophila tristis is a relatively uncommon European species of fruit flies from the family Drosophilidae. It is associated with deciduous woodland. Adults have been observed feeding on tree sap runs. Adults are in flight from April to November, being most abundant in June to August. [1]

Related Research Articles

<i>Drosophila</i> Genus of flies

Drosophila is a genus of flies, belonging to the family Drosophilidae, whose members are often called "small fruit flies" or pomace flies, vinegar flies, or wine flies, a reference to the characteristic of many species to linger around overripe or rotting fruit. They should not be confused with the Tephritidae, a related family, which are also called fruit flies ; tephritids feed primarily on unripe or ripe fruit, with many species being regarded as destructive agricultural pests, especially the Mediterranean fruit fly.

<i>Drosophila melanogaster</i> Species of fruit fly

Drosophila melanogaster is a species of fly in the family Drosophilidae. The species is often referred to as the fruit fly, though its common name is more accurately the vinegar fly. Starting with Charles W. Woodworth's proposal of the use of this species as a model organism, D. melanogaster continues to be widely used for biological research in genetics, physiology, microbial pathogenesis, and life history evolution. As of 2017, six Nobel prizes had been awarded for research using Drosophila.

<i>Drosophila</i> embryogenesis Embryogenesis of the fruit fly Drosophila, a popular model system

Drosophila embryogenesis, the process by which Drosophila embryos form, is a favorite model system for genetics and developmental biology. The study of its embryogenesis unlocked the century-long puzzle of how development was controlled, creating the field of evolutionary developmental biology. The small size, short generation time, and large brood size make it ideal for genetic studies. Transparent embryos facilitate developmental studies. Drosophila melanogaster was introduced into the field of genetic experiments by Thomas Hunt Morgan in 1909.

A genetic mosaic, or mosaicism, involves the presence in one individual who has developed from a fertilised egg of two or more genetic populations of cells with different genotypes. Mosaicism has been reported to be present in as high as 70% of cleavage-stage embryos and 90% of blastocyst-stage embryos derived from in vitro fertilization.

In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as Drosophila, neuroblasts are neural progenitor cells which divide asymmetrically to produce a neuroblast, and a daughter cell of varying potency depending on the type of neuroblast. Vertebrate neuroblasts differentiate from radial glial cells and are committed to becoming neurons. Neural stem cells, which only divide symmetrically to produce more neural stem cells, transition gradually into radial glial cells. Radial glial cells, also called radial glial progenitor cells, divide asymmetrically to produce a neuroblast and another radial glial cell that will re-enter the cell cycle.

Polytene chromosome

Polytene chromosomes are large chromosomes which have thousands of DNA strands. They provide a high level of function in certain tissues such as salivary glands of insects

Eric F. Wieschaus

Eric Francis Wieschaus is an American evolutionary developmental biologist and 1995 Nobel Prize-winner.

Voltinism is a term used in biology to indicate the number of broods or generations of an organism in a year. The term is most often applied to insects, and is particularly in use in sericulture, where silkworm varieties vary in their voltinism.

Imaginal disc One of the parts of a holometabolous insect larva

An imaginal disc is one of the parts of a holometabolous insect larva that will become a portion of the outside of the adult insect during the pupal transformation. Contained within the body of the larva, there are pairs of discs that will form, for instance, the wings or legs or antennae or other structures in the adult. The role of the imaginal disc in insect development was first elucidated by Jan Swammerdam.

Drosophila C virus belongs to the genus Cripavirus and was previously thought to be a member of the virus family Picornaviridae; it has since been classified as belonging to the Dicistroviridae. It is a single stranded positive sense RNA virus of approximately 9300 nucleotides and it contains two open reading frames. The virus particles are 30 nm in diameter and are made up of approximately 30% of RNA and 70% protein. The virus capsid is composed of three major polypeptides and two minor polypeptides.

TLX

Nuclear receptor TLX also known as NR2E1 is a protein that in humans is encoded by the NR2E1 gene. TLX is a member of the nuclear receptor family of intracellular transcription factors.

Jules A. Hoffmann

Jules A. Hoffmann is a Luxembourg-born French biologist. During his youth, growing up in Luxembourg, he developed a strong interest in insects under the influence of his father, Jos Hoffmann. This eventually resulted in the younger Hoffmann's dedication to the field of biology using insects as model organisms. He currently holds a faculty position at the University of Strasbourg. He is a research director and member of the board of administrators of the National Center of Scientific Research (CNRS) in Strasbourg, France. He was elected to the positions of Vice-President (2005-2006) and President (2007-2008) of the French Academy of Sciences. Hoffmann and Bruce Beutler were jointly awarded a half share of the 2011 Nobel Prize in Physiology or Medicine for "their discoveries concerning the activation of innate immunity,". [More specifically, the work showing increased Drosomycin expression following activation of Toll pathway in microbial infection.]

Pseudopupil Dark spot on the compound eyes of some invertebrates

In the compound eye of invertebrates such as insects and crustaceans, the pseudopupil appears as a dark spot which moves across the eye as the animal is rotated. This occurs because the ommatidia that one observes "head-on" absorb the incident light, while those to one side reflect it. The pseudopupil therefore reveals which ommatidia are aligned with the axis along which the observer is viewing.

TRPN is a member of the transient receptor potential channel family of ion channels, which is a diverse group of proteins thought to be involved in mechanoreception. The TRPN gene was given the name no mechanoreceptor potential C (nompC) when it was first discovered in fruit flies, hence the N in TRPN. Since its discovery in fruit flies, TRPN homologs have been discovered and characterized in worms, frogs, and zebrafish.

<i>Cycle</i> (gene)

Cycle (cyc) is a gene in Drosophila melanogaster that encodes the CYCLE protein (CYC). The Cycle gene (cyc) is expressed in a variety of cell types in a circadian manner. It is involved in controlling both the sleep-wake cycle and circadian regulation of gene expression by promoting transcription in a negative feedback mechanism. The cyc gene is located on the left arm of chromosome 3 and codes for a transcription factor containing a basic helix-loop-helix (bHLH) domain and a PAS domain. The 2.17 kb cyc gene is divided into 5 coding exons totaling 1,625 base pairs which code for 413 aminos acid residues. Currently 19 alleles are known for cyc. Orthologs performing the same function in other species include ARNTL and ARNTL2.

The Drosophila connectome, once completed, will be a complete list of the roughly 135,000 neurons in the brain of the fruit fly Drosophila melanogaster, along with all of the connections (synapses) between these neurons. As of 2020, the Drosophila connectome is a work in progress, being obtained by the methods of neural circuit reconstruction. A stack of EM images of an entire brain exist, suitable for sparse tracing of specific circuits. A full connectome of a large portion of the central brain is likewise available. Many of the 76 compartments of the Drosophila brain have connectomes available, and the remainders are subjects of ongoing study.

Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs), radial glial cells (RGCs), basal progenitors (BPs), intermediate neuronal precursors (INPs), subventricular zone astrocytes, and subgranular zone radial astrocytes, among others.

Drosophila metlerri, commonly known as the Sonoran Desert fly, is a fly in the genus Drosophila. The species is found in North America and is most concentrated along the southern coast of California and in Mexico. D. mettleri are dependent on plant hosts, namely, the saguaro and cardon cacti. Thus, they are most prevalent in arid, desert conditions. It is able to detoxify chemicals found in the rotting liquid of cacti hosts, which allows it to use otherwise lethal soil as a nesting site.

<i>Drosophila silvestris</i> Species of fly

Drosophila silvestris is a large species of fly in the family Drosophilidae that are primarily black with yellow spots. As a rare species of fruit fly endemic to Hawaii, the fly often experiences reproductive isolation. Despite barriers in nature, D. silvestris is able to breed with D. heteroneura to create hybrid flies in the laboratory.

CYP318A1 is a Drosophila melanogaster gene belongs to the cytochrome P450 family, involved in the insecticide resistance.

References

  1. Shorrocks, B. (1972). Invertebrate types: Drosophila. London: Ginn & Co. pp. 144 pp. ISBN   0-08-025941-3.