EEMBC

Last updated

EEMBC, the Embedded Microprocessor Benchmark Consortium, is a non-profit, member-funded organization formed in 1997, focused on the creation of standard benchmarks for the hardware and software used in embedded systems. The goal of its members is to make EEMBC benchmarks an industry standard for evaluating the capabilities of embedded processors, compilers, and the associated embedded system implementations, according to objective, clearly defined, application-based criteria. EEMBC members may contribute to the development of benchmarks, vote at various stages before public distribution, and accelerate testing of their platforms through early access to benchmarks and associated specifications.

Contents

In chronological order of development:

AutoBench 1.1 - single-threaded code for automotive, industrial, and general-purpose applications

Networking - single-threaded code associated with moving packets in networking applications.

MultiBench - multi-threaded code for testing scalability of multicore processors.

CoreMark - measures the performance of central processing units (CPU) used in embedded systems

BXBench - system benchmark measuring the web browsing user-experience, from the click/touch on a URL to final page rendered on the screen, and is not limited to measuring only JavaScript execution.

AndEBench-Pro - system benchmark providing a standardized, industry-accepted method of evaluating Android platform performance. It's available for free download in Google Play.

FPMark - multi-threaded code for both single- and double-precision floating-point workloads, as well as small, medium, and large data sets.

ULPMark - energy-measuring benchmark for ultra-low power microcontrollers; benchmarks include ULPMark-Core (with a focus on microcontroller core activity and sleep modes) and ULPMark-Peripheral (with a focus on microcontroller peripheral activity such as Analog-to-digital converter, Serial Peripheral Interface Bus, Real-time clock, and Pulse-width modulation)

IoTConnect - system-level benchmark measuring performance and energy associated with connecting Internet of Things devices; the first phase, called IoTMark-BLE, focuses on Bluetooth

ADASMark - focusing on compute intensive application flows which are common to embedded heterogeneous computing architectures; the first phase includes real-world workloads from automotive surround view.

SecureMark - Measures performance, energy, and memory impact allowing application developers to analyze IoT device security implementations

IoTMark-Wi-Fi - The second phase of IoTMark, which focuses on 802.11 energy efficiency.

Name

Originally founded as the EDN Embedded Microprocessor Benchmark Consortium, EEMBC separated from EDN Magazine in 2012, but retained the double "E" in the name.

Related Research Articles

Central processing unit Central computer component which executes instructions

A central processing unit (CPU), also called a central processor, main processor or just processor, is the electronic circuitry that executes instructions comprising a computer program. The CPU performs basic arithmetic, logic, controlling, and input/output (I/O) operations specified by the instructions in the program. This contrasts with external components such as main memory and I/O circuitry, and specialized processors such as graphics processing units (GPUs).

Microprocessor Computer processor contained on an integrated-circuit chip

A microprocessor is a computer processor where the data processing logic and control is included on a single integrated circuit, or a small number of integrated circuits. The microprocessor contains the arithmetic, logic, and control circuitry required to perform the functions of a computer's central processing unit. The integrated circuit is capable of interpreting and executing program instructions and performing arithmetic operations. The microprocessor is a multipurpose, clock-driven, register-based, digital integrated circuit that accepts binary data as input, processes it according to instructions stored in its memory, and provides results as output. Microprocessors contain both combinational logic and sequential digital logic, and operate on numbers and symbols represented in the binary number system.

Microcontroller Small computer on a single integrated circuit

A microcontroller is a small computer on a single VLSI integrated circuit (IC) chip. A microcontroller contains one or more CPUs along with memory and programmable input/output peripherals. Program memory in the form of ferroelectric RAM, NOR flash or OTP ROM is also often included on chip, as well as a small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications consisting of various discrete chips.

Embedded system Computer system with a dedicated function

An embedded system is a computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is embedded as part of a complete device often including electrical or electronic hardware and mechanical parts. Because an embedded system typically controls physical operations of the machine that it is embedded within, it often has real-time computing constraints. Embedded systems control many devices in common use today. In 2009, it was estimated that ninety-eight percent of all microprocessors manufactured were used in embedded systems.

System on a chip Integrated circuit that incorporates the components of a computer

A system on a chip, also written as system-on-a-chip and system-on-chip, is an integrated circuit that integrates all or most components of a computer or other electronic system. These components almost always include a central processing unit (CPU), memory interfaces, on-chip input/output devices, input/output interfaces, and secondary storage interfaces, often alongside other components such as radio modems and a graphics processing unit (GPU) – all on a single substrate or microchip. It may contain digital, analog, mixed-signal, and often radio frequency signal processing functions.

Digital signal processor Specialized microprocessor optimized for digital signal processing

A digital signal processor (DSP) is a specialized microprocessor chip, with its architecture optimized for the operational needs of digital signal processing. DSPs are fabricated on MOS integrated circuit chips. They are widely used in audio signal processing, telecommunications, digital image processing, radar, sonar and speech recognition systems, and in common consumer electronic devices such as mobile phones, disk drives and high-definition television (HDTV) products.

POWER5 2004 family of multiprocessors by IBM

The POWER5 is a microprocessor developed and fabricated by IBM. It is an improved version of the POWER4. The principal improvements are support for simultaneous multithreading (SMT) and an on-die memory controller. The POWER5 is a dual-core microprocessor, with each core supporting one physical thread and two logical threads, for a total of two physical threads and four logical threads.

Blackfin

The Blackfin is a family of 16-/32-bit microprocessors developed, manufactured and marketed by Analog Devices. The processors have built-in, fixed-point digital signal processor (DSP) functionality supplied by 16-bit multiply–accumulates (MACs), accompanied on-chip by a microcontroller. It was designed for a unified low-power processor architecture that can run operating systems while simultaneously handling complex numeric tasks such as real-time H.264 video encoding.

POWER7 2010 family of multi-core microprocessors by IBM

POWER7 is a family of superscalar multi-core microprocessors based on the Power ISA 2.06 instruction set architecture released in 2010 that succeeded the POWER6 and POWER6+. POWER7 was developed by IBM at several sites including IBM's Rochester, MN; Austin, TX; Essex Junction, VT; T. J. Watson Research Center, NY; Bromont, QC and IBM Deutschland Research & Development GmbH, Böblingen, Germany laboratories. IBM announced servers based on POWER7 on 8 February 2010.

The PowerPC 400 family is a line of 32-bit embedded RISC processor cores based on the PowerPC or Power ISA instruction set architectures. The cores are designed to fit inside specialized applications ranging from system-on-a-chip (SoC) microcontrollers, network appliances, application-specific integrated circuits (ASICs) and field-programmable gate arrays (FPGAs) to set-top boxes, storage devices and supercomputers.

Benchmark (computing) Comparing the relative performance of computers by running the same program on all of them

In computing, a benchmark is the act of running a computer program, a set of programs, or other operations, in order to assess the relative performance of an object, normally by running a number of standard tests and trials against it.

UltraSPARC T1 Microprocessor by Sun Microsystems

Sun Microsystems' UltraSPARC T1 microprocessor, known until its 14 November 2005 announcement by its development codename "Niagara", is a multithreading, multicore CPU. Designed to lower the energy consumption of server computers, the CPU typically uses 72 W of power at 1.4 GHz.

Multi-core processor Microprocessor with more than one processing unit

A multi-core processor is a computer processor on a single integrated circuit with two or more separate processing units, called cores, each of which reads and executes program instructions. The instructions are ordinary CPU instructions but the single processor can run instructions on separate cores at the same time, increasing overall speed for programs that support multithreading or other parallel computing techniques. Manufacturers typically integrate the cores onto a single integrated circuit die or onto multiple dies in a single chip package. The microprocessors currently used in almost all personal computers are multi-core.

A multiprocessor system on a chip is a system on a chip (SoC) which includes multiple microprocessors. As such, it is a multi-core system on a chip.

In computing, performance per watt is a measure of the energy efficiency of a particular computer architecture or computer hardware. Literally, it measures the rate of computation that can be delivered by a computer for every watt of power consumed. This rate is typically measured by performance on the LINPACK benchmark when trying to compare between computing systems: an example using this is the Green500 list of supercomputers. Performance per watt has been suggested to be a more sustainable measure of computing than Moore’s Law.

CoreMark is a benchmark that measures the performance of central processing units (CPU) used in embedded systems. It was developed in 2009 by Shay Gal-On at EEMBC and is intended to become an industry standard, replacing the Dhrystone benchmark. The code is written in C and contains implementations of the following algorithms: list processing, matrix manipulation, state machine, and CRC. The code is under the Apache License 2.0 and is free of cost to use, but ownership is retained by the Consortium and publication of modified versions under the CoreMark name prohibited.

Manycore processors are special kinds of multi-core processors designed for a high degree of parallel processing, containing numerous simpler, independent processor cores. Manycore processors are used extensively in embedded computers and high-performance computing.

A single-core processor is a microprocessor with a single core on its die. It performs the fetch-decode-execute cycle once per clock-cycle, as it only runs on one thread. A computer using a single core CPU is generally slower than a multi-core system.

SHAKTI (microprocessor) Technology project funded by the Government of India

SHAKTI is an open-source initiative by the Reconfigurable Intelligent Systems Engineering (RISE) group at Indian Institute of Technology, Madras to develop the first indigenous Indian industrial-grade processor. The aim of SHAKTI initiative includes building an opensource production-grade processor, complete System on Chips (SoCs), development boards and SHAKTI based software platform. The primary focus of the team is architecture research to develop SoCs, which is competitive with commercial offerings in the market concerning area, power and performance. All the source codes for SHAKTI are open-sourced under the Modified BSD License. The project was funded by Ministry of Electronics and Information Technology (MeITY), Government of India.

References