Earl Muetterties

Last updated • 2 min readFrom Wikipedia, The Free Encyclopedia
Earl Leonard Muetterties
Muetterties.JPG
Born(1927-06-23)June 23, 1927
DiedJanuary 12, 1984(1984-01-12) (aged 56)
CitizenshipAmerican
Alma mater Northwestern University,
Harvard University
Known forPolyhedral boranes
Fluxional processes in organometallic complexes
Homogeneous catalysis
Heterogeneous catalysis
Apicophilicity
AwardsSenior U.S.. Scientist Award of the Humboldt Foundation
ACS Award in Inorganic Chemistry (1965)
Royal Society of Chemistry (RSC) Centenary Lectureship (1981)
National Academy of Sciences
Scientific career
Fields Inorganic chemistry
Institutions DuPont Central Research,
Cornell University,
University of California, Berkeley
Doctoral advisor Charles Brown and
Eugene G. Rochow
Doctoral students Cynthia Friend [1]

Earl Muetterties (June 23, 1927 – January 12, 1984), was an American inorganic chemist born in Illinois, who is known for his experimental work with boranes, homogeneous catalysis, heterogeneous catalysis, fluxional processes in organometallic complexes and apicophilicity. [2]

Contents

Training

Muetterties earned a bachelor's degree in chemistry at Northwestern University in 1949 and received his doctoral thesis in boron-nitrogen chemistry under Charles Brown [3] and Eugene G. Rochow [4] at Harvard in 1952.

Career

Career at DuPont

Earl Muetterties joined DuPont Central Research Department and was promoted to research supervisor in 1955. His early contributions were on the inorganic fluorine compounds, especially of sulfur and phosphorus. [5] In collaboration with William D. Phillips he exploited NMR for study of dynamic processes in inorganic fluoride compounds. [6] Muetterties's work on boron hydride clusters led to the work on several polyhedral borane anions such as B12H122−. [7] [8] He was an inventor on some basic findings with the polyhedral borate anions. [9] In addition to the polyhedral boranes, the program explored pi-allyl, fluoroalkyl, and boron hydride complexes of the transition metals. Research also extended to stereochemically-non-rigid complexes. [10] In 1965, Muetterties became Associate Director in the DuPont Central Research. In addition to groups in homogeneous and heterogeneous catalysis, groups were established in the synthesis and spectroscopy of organometallic compounds. He was also a prolific inventor. [9]

Academic career

Muetterties's academic ties started with an adjunct professorship in chemistry at Princeton University (1967–1969) and then at the University of Pennsylvania (1969–1973). With the Monell Chemical Senses Center, his research interests extended to mammalian pheromones. [11] After a two-month lectureship at Cambridge University in 1972, he assumed a professorship at Cornell University in 1973, conducting research on organometallic chemistry and homogeneous catalysis, sometimes in collaboration with Roald Hoffman. In 1979, Muetterties moved to the University of California, Berkeley, where he continued research in homogeneous catalysis and cluster chemistry. [12] At Berkeley he also worked on surface science, and he maintained a research facility at the Lawrence Berkeley Laboratory. [13]

Muetterties helped establish the American Chemical Society journals Inorganic Chemistry and Organometallics. He was on the editorial board of Inorganic Syntheses and edited Volume 10. He also edited books on boron chemistry and transition-metal hydrides and wrote reviews on complexes with unusual coordination numbers. A tribute to Muetterties has also been published. [14]

Related Research Articles

<span class="mw-page-title-main">Inorganic chemistry</span> Field of chemistry

Inorganic chemistry deals with synthesis and behavior of inorganic and organometallic compounds. This field covers chemical compounds that are not carbon-based, which are the subjects of organic chemistry. The distinction between the two disciplines is far from absolute, as there is much overlap in the subdiscipline of organometallic chemistry. It has applications in every aspect of the chemical industry, including catalysis, materials science, pigments, surfactants, coatings, medications, fuels, and agriculture.

<span class="mw-page-title-main">Organometallic chemistry</span> Study of organic compounds containing metal(s)

Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and selenium, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide, cyanide, or carbide, are generally considered to be organometallic as well. Some related compounds such as transition metal hydrides and metal phosphine complexes are often included in discussions of organometallic compounds, though strictly speaking, they are not necessarily organometallic. The related but distinct term "metalorganic compound" refers to metal-containing compounds lacking direct metal-carbon bonds but which contain organic ligands. Metal β-diketonates, alkoxides, dialkylamides, and metal phosphine complexes are representative members of this class. The field of organometallic chemistry combines aspects of traditional inorganic and organic chemistry.

<span class="mw-page-title-main">Boron hydride clusters</span>

Boron hydride clusters are compounds with the formula BxHy or related anions, where x ≥ 3. Many such cluster compounds are known. Common examples are those with 5, 10, and 12 boron atoms. Although they have few practical applications, the borane hydride clusters exhibit structures and bonding that differs strongly from the patterns seen in hydrocarbons. Hybrids of boranes and hydrocarbons, the carboranes are also well developed.

<span class="mw-page-title-main">Decaborane</span> Chemical compound

Decaborane, also called decaborane(14), is the inorganic compound with the chemical formula B10H14. It is classified as a borane and more specifically a boron hydride cluster. This white crystalline compound is one of the principal boron hydride clusters, both as a reference structure and as a precursor to other boron hydrides. It is toxic and volatile, giving off a foul odor, like that of burnt rubber or chocolate.

<span class="mw-page-title-main">Carborane</span> Class of chemical compounds

Carboranes are electron-delocalized clusters composed of boron, carbon and hydrogen atoms. Like many of the related boron hydrides, these clusters are polyhedra or fragments of polyhedra. Carboranes are one class of heteroboranes.

Anions that interact weakly with cations are termed non-coordinating anions, although a more accurate term is weakly coordinating anion. Non-coordinating anions are useful in studying the reactivity of electrophilic cations. They are commonly found as counterions for cationic metal complexes with an unsaturated coordination sphere. These special anions are essential components of homogeneous alkene polymerisation catalysts, where the active catalyst is a coordinatively unsaturated, cationic transition metal complex. For example, they are employed as counterions for the 14 valence electron cations [(C5H5)2ZrR]+ (R = methyl or a growing polyethylene chain). Complexes derived from non-coordinating anions have been used to catalyze hydrogenation, hydrosilylation, oligomerization, and the living polymerization of alkenes. The popularization of non-coordinating anions has contributed to increased understanding of agostic complexes wherein hydrocarbons and hydrogen serve as ligands. Non-coordinating anions are important components of many superacids, which result from the combination of Brønsted acids and Lewis acids.

<span class="mw-page-title-main">Organoboron chemistry</span> Study of compounds containing a boron-carbon bond

Organoboron chemistry or organoborane chemistry studies organoboron compounds, also called organoboranes. These chemical compounds combine boron and carbon; typically, they are organic derivatives of borane (BH3), as in the trialkyl boranes.

Marion Frederick Hawthorne was an inorganic chemist who made contributions to the chemistry of boron hydrides, especially their clusters.

<span class="mw-page-title-main">Tris(pentafluorophenyl)borane</span> Chemical compound

Tris(pentafluorophenyl)borane, sometimes referred to as "BCF", is the chemical compound (C6F5)3B. It is a white, volatile solid. The molecule consists of three pentafluorophenyl groups attached in a "paddle-wheel" manner to a central boron atom; the BC3 core is planar. It has been described as the “ideal Lewis acid” because of its high thermal stability and the relative inertness of the B-C bonds. Related fluoro-substituted boron compounds, such as those containing B−CF3 groups, decompose with formation of B-F bonds. Tris(pentafluorophenyl)borane is thermally stable at temperatures well over 200 °C, resistant to oxygen, and water-tolerant.

<span class="mw-page-title-main">Boron compounds</span>

Boron compounds are compounds containing the element boron. In the most familiar compounds, boron has the formal oxidation state +3. These include oxides, sulfides, nitrides, and halides.

In 1957, the research organization of the Chemicals Department of E. I. du Pont de Nemours and Company was renamed Central Research Department, beginning the history of the premier scientific organization within DuPont and one of the foremost industrial laboratories devoted to basic science. Located primarily at the DuPont Experimental Station and Chestnut Run, in Wilmington, Delaware, it expanded to include laboratories in Geneva, Switzerland, Seoul, South Korea, Shanghai, China, and India (Hyderabad). In January, 2016 a major layoff marked the end of the organization.

<span class="mw-page-title-main">Octadecaborane</span> Chemical compound

Octadecaborane is an inorganic compound, a boron hydride cluster with chemical formula B18H22. It is a colorless flammable solid, like many higher boron hydrides. Although the compound has no practical applications, its structure is of theoretical and pedagogical interest.

<span class="mw-page-title-main">Caesium dodecaborate</span> Chemical compound

Caesium dodecaborate is an inorganic compound with the formula Cs2B12H12. It is a salt composed of caesium and dodecaborate(12) ions. The [B12H12]2− anion has been of great theoretical interest to the chemistry community.

John David Kennedy is a chemist and emeritus professor of inorganic chemistry at the University of Leeds. He works in the area of polyhedral borane chemistry.

<span class="mw-page-title-main">E. D. Jemmis</span> Indian theoretical chemist

Eluvathingal Devassy Jemmis is a professor of theoretical chemistry at the Indian Institute of Science, Bangalore, India. He was the founding director of Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM). His primary area of research is applied theoretical chemistry with emphasis on structure, bonding and reactivity, across the periodic table of the elements. Apart from many of his contributions to applied theoretical chemistry, an equivalent of the structural chemistry of carbon, as exemplified by the Huckel 4n+2 Rule, benzenoid aromatics and graphite, and tetrahedral carbon and diamond, is brought in the structural chemistry of boron by the Jemmis mno rules which relates polyhedral and macropolyhedral boranes to allotropes of boron and boron-rich solids. He has been awarded Padma Shri in Science and Engineering category by the Government of India.

Frederick Nye Tebbe was a chemist known for his work on organometallic chemistry. Tebbe was born in Oakland, California on March 20, 1935. His father, Charles L. Tebbe, worked for the United States Forest Service so Fred’s early education took place in Montana, Oregon, Maryland and Pennsylvania. He married Margaret Manzer in 1960, and they had a son and a daughter. He died of pancreatic cancer at his home in Delaware on September 28, 1995.

<span class="mw-page-title-main">Dodecaborate</span> Chemical compound

The dodecaborate(12) anion, [B12H12]2−, is a borane with an icosahedral arrangement of 12 boron atoms, with each boron atom being attached to a hydrogen atom. Its symmetry is classified by the molecular point group Ih.

<span class="mw-page-title-main">1,2-Dimethyldiborane</span> Chemical compound

1,2-Dimethyldiborane is an organoboron compound with the formula [(CH3)BH2]2. Structurally, it is related to diborane, but with methyl groups replacing terminal hydrides on each boron. It is the dimer of methylborane, CH3BH2, the simplest alkylborane. 1,2-Dimethyldiborane can exist in a cis- and a trans arrangement. 1,2-Dimethyldiborane is an easily condensed, colorless gas that ignites spontaneously in air.

<span class="mw-page-title-main">Trimethyldiborane</span> Chemical compound

Trimethyldiborane, (CH3)3B2H3 is a molecule containing boron carbon and hydrogen. It is an alkylborane, consisting of three methyl group substituted for a hydrogen in diborane. It can be considered a mixed dimer: (CH3)2BH2BH(CH3) or dimethylborane and methylborane. called 1,2-dimethyldiborane. Other combinations of methylation occur on diborane, including monomethyldiborane, 1,2-dimethyldiborane, tetramethyldiborane, 1,1-dimethylborane and trimethylborane. At room temperature the substance is at equilibrium between these forms, so it is difficult to keep it pure. The methylboranes were first prepared by H. I. Schlesinger and A. O. Walker in the 1930s.

<span class="mw-page-title-main">Borane carbonyl</span> Chemical compound

Borane carbonyl is the inorganic compound with the formula H3BCO. This colorless gas is the adduct of borane and carbon monoxide. It is usually prepared by combining borane-ether complexes and CO. The compound is mainly of theoretical and pedagogical interest.

References

  1. "Cynthia M. Friend : CV" (DOC). Faculty.chemistry.harvard.edu. Retrieved June 6, 2022.
  2. "Earl L. Muetterties obituary". New York Times. January 17, 1984. Retrieved 12 July 2015.
  3. Brown, Charles A.; Muetterties, Earl L.; Rochow, Eugene G. Boron-nitrogen systems. III. Addition compounds of boron trifluoride and diamines. Journal of the American Chemical Society (1954), 76 2537-9.
  4. Muetterties, Earl L.; Rochow, Eugene G. Complexes of boron fluoride with amides. Journal of the American Chemical Society (1953), 75 490-1.
  5. Roesky, Herbert W.; Tebbe, Fred N.; Muetterties, Earl L.. Thiophosphate chemistry. Anion set X2PS2-, (XPS2)2S2-, and (XPS2)2S22-. Inorganic Chemistry (1970), 9(4), 831-6.
  6. Muetterties, E. L.; Phillips, W. D. Fluoroarsenites. Journal of the American Chemical Society (1957), 79 3686-7.
  7. Hawthorne, M. Frederick (March 23, 2009). "Polyhedral Boranes: Chemistry For The Future". C&EN. Retrieved 16 September 2019.
  8. Muetterties, E. L.; Balthis, J. H.; Chia, Y. T.; Knoth, W. H.; Miller, H. C. Inorg. Chem. 1964, 3, 444. Salts and Acids of B10H102− and B12H122−
  9. 1 2 Miller, Henry C.; Muetterties, Earl L. (1965). "Dodecahydroborate Compounds". US Patent 3169045A.
  10. Muetterties, E. L.. Polytopal form and isomerism. Tetrahedron (1974), 30(12), 1595-604.
  11. Beruter J; Beauchamp G K; Muetterties E L Complexity of chemical communication in mammals: urinary components mediating sex discrimination by male guinea pigs. Biochemical and biophysical research communications (1973), 53, 264-71.
  12. Burch, R. R.; Muetterties, E. L.; Thompson, M. R.; Day, V. W. Synthesis and structure of a coordinately unsaturated trinuclear rhodium cluster. Organometallics (1983), 2(3), 474-8.
  13. Klarup, D. G.; Muetterties, E. L.; Stacy, A. M. Thermal desorption studies of methyl-substituted benzenes on nickel(111) and nickel(100) surfaces. Langmuir (1985), 1, 764-6.
  14. R. G. Bergman, G. W. Parshall, and K. N. Raymond. Earl L. Muetterties, 1927–1984. In Biographical Memoirs, vol. 63, pp. 383–93. Washington, D.C.: National Academy Press, 1994.