This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
The chief electrical characteristic of a dynamic loudspeaker's driver is its electrical impedance as a function of frequency. It can be visualized by plotting it as a graph, called the impedance curve.
The most common driver type is an electro-mechanical transducer using a voice coil rigidly connected to a diaphragm (generally a cone). Other types have similar connections, though differing in detail, between their acoustical environment and their electrical properties.
The voice coil in moving coil drivers is suspended in a magnetic field provided by the loudspeaker magnet structure. As electric current flows through the voice coil (from an electronic amplifier), the magnetic field created by the coil reacts against the magnet's fixed field and moves the voice coil (and so the cone). Alternating current will move the cone back and forth.
The moving system of the loudspeaker—consisting of the cone, cone suspension, spider, and voice coil—can be modeled as an effective mass (spring–mass system), a mass suspended by a spring. This system has a characteristic mass and stiffness, and a resonant frequency at which the system will vibrate freely.
This frequency is known as the "free-space resonance" of the loudspeaker and is designated by Fs. At this frequency, the voice coil is vibrating in the speaker's magnetic field with maximum peak-to-peak amplitude and velocity. The back EMF generated by this movement is also at its maximum. The electrical impedance of the speaker varies with the back EMF and thus with the applied frequency. The impedance is at its maximum at Fs, shown as Zmax in the graph.
For frequencies just below resonance, the impedance rises rapidly as the frequency increases towards Fs and is inductive in nature. At resonance, the impedance is purely resistive. As the frequency increases above Fs, the impedance drops—it behaves capacitively. The impedance reaches a minimum value, Zmin, at some frequency where the behaviour is fairly resistive over some range. A speaker's rated or nominal impedance (Znom) is derived from this Zmin value, explained ahead.
Beyond the Zmin point the impedance is again largely inductive and continues to rise gradually with frequency. The frequency Fs and the frequencies above and below it where the impedance is 1/√2Zmax are important in determining the loudspeaker's T/S parameters. These can be used, for example, to design a suitable enclosure for the driver, especially for low frequency drivers. In fact Fs is itself one of the Thiele/Small parameters.
The variation in loudspeaker impedance is a consideration in audio amplifier design. Among other things, amplifiers designed to cope with such variations are more reliable. There are two main factors to consider when matching a speaker to an amplifier.
This is the minimum value in the impedance vs. frequency relationship, which is always higher than the DC resistance of the voice coil, i.e., as measured by an ohmmeter. Minimum impedance is significant because the lower the impedance, the higher the current must be at the same drive voltage. The output devices of an amplifier are rated for a certain maximum current level, and when this is exceeded the device(s) sometimes, more or less promptly, fail.
Due to the reactive nature of a speaker's impedance over the audio band frequencies, giving a speaker a single value for 'impedance' rating is in principle impossible, as one may surmise from the impedance vs. frequency curve above. The nominal impedance of a loudspeaker is a convenient, single number reference that loosely describes the impedance value of the loudspeaker over a majority of the audio band. A speaker's nominal impedance is defined as:
The graph shows the impedance curve of a single loudspeaker driver in free-air (unmounted in any type of enclosure). A home hi-fi loudspeaker system typically consists of two or more drivers, an electrical crossover network to divide the signal by frequency band and route them appropriately to the drivers, and an enclosure that all these components are mounted in. The impedance curve of such a system can be very complex, and the simple formula above does not as easily apply.
The nominal impedance rating of consumer loudspeakers systems can aid in choosing the correct loudspeaker for a given amplifier (or vice versa). If a home hi-fi amplifier specifies 8 ohm or greater loads, care should be taken that loudspeakers with a lower impedance are not used, lest the amplifier be required to produce more current than it was designed to handle. Using a 4 ohm loudspeaker system on an amplifier specifying 8 ohms or greater could lead to amplifier failure.
Impedance variations of the load with frequency translate into variation in the phase relationship between the amplifier's voltage and current outputs. For a resistive load, usually (but not always) the voltage across the amplifier's output devices is maximum when the load current is minimum (and the voltage is minimum across the load) and vice versa, and as a result the power dissipation in those devices is least. But due to the complex and variable nature of the driver/crossover load and its effect on the phase relationship between the voltage and current, the current will not necessarily be at its minimum when the voltage across the output devices is maximum - this results in increased power dissipation in the amplifier output stage which manifests as heating in the output devices. The phase angle varies most near resonance in moving coil loudspeakers. If this point is not taken into consideration during the amplifier design, the amplifier may overheat causing it to shut down, or cause failure of the output devices. See Power factor for more detail.
A loudspeaker acts as a generator when a coil is moving in a magnetic field. When the loudspeaker coil moves in response to a signal from the amplifier, the coil generates a back EMF that resists the amplifier signal and acts as a "brake" to stop the coil movement. The braking effect is critical to speaker design, in that designers leverage it to ensure the speaker stops making sound quickly and that the coil is in position to reproduce the next sound. The electrical signal generated by the coil travels back along the speaker cable to the amplifier. Well-designed amplifiers have low output impedance so that this generated signal has minimal effect on the amplifier.
Characteristically, solid state amplifiers have had much lower output impedances than tube amplifiers. So much so, that differences in practice between a 16-ohm nominal impedance driver and a 4-ohm nominal impedance driver have not been important enough to adjust for. The amplifier damping factor, which is the ratio of the nominal load impedance (driver voice coil) to amplifier output impedance, is adequate in either case for well-designed solid state amplifiers.
Tube amplifiers have sufficiently higher output impedances that they normally included multi-tap output transformers to better match to the driver impedance. Sixteen ohm drivers (or loudspeakers systems) would be connected to the 16-ohm tap, 8 ohm to the 8 ohm tap, etc.
This is significant since the ratio between the loudspeaker impedance and the amplifier's impedance at a particular frequency provides damping (i.e., energy absorption) for the back EMF generated by a driver. In practice, this is important to prevent ringing or overhang which is, essentially, a free vibration of the moving structures in a driver when it is excited (i.e., driven with a signal) at that frequency. This can be clearly seen in waterfall measurement plots. A properly adjusted damping factor can control this free vibration of the moving structures and improve the sound of the driver.
A loudspeaker is an electroacoustic transducer that converts an electrical audio signal into a corresponding sound. A speaker system, also often simply referred to as a speaker or loudspeaker, comprises one or more such speaker drivers, an enclosure, and electrical connections possibly including a crossover network. The speaker driver can be viewed as a linear motor attached to a diaphragm which couples that motor's movement to motion of air, that is, sound. An audio signal, typically from a microphone, recording, or radio broadcast, is amplified electronically to a power level capable of driving that motor in order to reproduce the sound corresponding to the original unamplified electronic signal. This is thus the opposite function to the microphone; indeed the dynamic speaker driver, by far the most common type, is a linear motor in the same basic configuration as the dynamic microphone which uses such a motor in reverse, as a generator.
Audio crossovers are a type of electronic filter circuitry that splits an audio signal into two or more frequency ranges, so that the signals can be sent to loudspeaker drivers that are designed to operate within different frequency ranges. The crossover filters can be either active or passive. They are often described as two-way or three-way, which indicate, respectively, that the crossover splits a given signal into two frequency ranges or three frequency ranges. Crossovers are used in loudspeaker cabinets, power amplifiers in consumer electronics and pro audio and musical instrument amplifier products. For the latter two markets, crossovers are used in bass amplifiers, keyboard amplifiers, bass and keyboard speaker enclosures and sound reinforcement system equipment.
A tweeter or treble speaker is a special type of loudspeaker that is designed to produce high audio frequencies, typically deliver high frequencies up to 100 kHz. The name is derived from the high pitched sounds made by some birds (tweets), especially in contrast to the low woofs made by many dogs, after which low-frequency drivers are named (woofers).
A woofer or bass speaker is a technical term for a loudspeaker driver designed to produce low frequency sounds, typically from 20 Hz up to a few hundred Hz. A subwoofer can take the lower part of this range, normally up to 80 Hz. The name is from the onomatopoeic English word for a dog's deep bark, "woof". The most common design for a woofer is the electrodynamic driver, which typically uses a stiff paper cone, driven by a voice coil surrounded by a magnetic field.
Headphones are a pair of small loudspeaker drivers worn on or around the head over a user's ears. They are electroacoustic transducers, which convert an electrical signal to a corresponding sound. Headphones let a single user listen to an audio source privately, in contrast to a loudspeaker, which emits sound into the open air for anyone nearby to hear. Headphones are also known as earphones or, colloquially, cans. Circumaural and supra-aural headphones use a band over the top of the head to hold the speakers in place. Another type, known as earbuds or earpieces, consists of individual units that plug into the user's ear canal. A third type are bone conduction headphones, which typically wrap around the back of the head and rest in front of the ear canal, leaving the ear canal open. In the context of telecommunication, a headset is a combination of a headphone and microphone.
Audio power is the electrical power transferred from an audio amplifier to a loudspeaker, measured in watts. The electrical power delivered to the loudspeaker, together with its efficiency, determines the sound power generated.
In electrical engineering, impedance matching is the practice of designing or adjusting the input impedance or output impedance of an electrical device for a desired value. Often, the desired value is selected to maximize power transfer or minimize signal reflection. For example, impedance matching typically is used to improve power transfer from a radio transmitter via the interconnecting transmission line to the antenna. Signals on a transmission line will be transmitted without reflections if the transmission line is terminated with a matching impedance.
Nominal wattage is used to simplify the measurement of the efficiency of a loudspeaker.
In an audio system, the damping factor is defined as the ratio of the rated impedance of the loudspeaker to the source impedance of the power amplifier. It was originally proposed in 1941. Only the magnitude of the loudspeaker impedance is used, and the power amplifier output impedance is assumed to be totally resistive.
In electrical engineering, the output impedance of an electrical network is the measure of the opposition to current flow (impedance), both static (resistance) and dynamic (reactance), into the load network being connected that is internal to the electrical source. The output impedance is a measure of the source's propensity to drop in voltage when the load draws current, the source network being the portion of the network that transmits and the load network being the portion of the network that consumes.
A dummy load is a device used to simulate an electrical load, usually for testing purposes. In radio a dummy antenna is connected to the output of a radio transmitter and electrically simulates an antenna, to allow the transmitter to be adjusted and tested without radiating radio waves. In audio systems, a dummy load is connected to the output of an amplifier to electrically simulate a loudspeaker, allowing the amplifier to be tested without producing sound. Load banks are connected to electrical power supplies to simulate the supply's intended electrical load for testing purposes.
Line level is the specified strength of an audio signal used to transmit analog audio between components such as CD and DVD players, television sets, audio amplifiers, and mixing consoles.
A pickup is a transducer that captures or senses mechanical vibrations produced by musical instruments, particularly stringed instruments such as the electric guitar, and converts these to an electrical signal that is amplified using an instrument amplifier to produce musical sounds through a loudspeaker in a speaker enclosure. The signal from a pickup can also be recorded directly.
Thiele/Small parameters are a set of electromechanical parameters that define the specified low frequency performance of a loudspeaker driver. These parameters are published in specification sheets by driver manufacturers so that designers have a guide in selecting off-the-shelf drivers for loudspeaker designs. Using these parameters, a loudspeaker designer may simulate the position, velocity and acceleration of the diaphragm, the input impedance and the sound output of a system comprising a loudspeaker and enclosure. Many of the parameters are strictly defined only at the resonant frequency, but the approach is generally applicable in the frequency range where the diaphragm motion is largely pistonic, i.e., when the entire cone moves in and out as a unit without cone breakup.
A guitar speaker is a loudspeaker – specifically the driver (transducer) part – designed for use in a combination guitar amplifier of an electric guitar, or for use in a guitar speaker cabinet. Typically these drivers produce only the frequency range relevant to electric guitars, which is similar to a regular woofer type driver, which is approximately 75 Hz — 5 kHz, or for electric bass speakers, down to 41 Hz for regular four-string basses or down to about 30 Hz for five-string instruments.
A variety of types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional parts.
Constant-voltage speaker systems refer to networks of loudspeakers which are connected to an audio amplifier using step-up and step-down transformers to simplify impedance calculations and to minimize power loss over the speaker cables. They are more appropriately called high-voltage audio distribution systems. The voltage is constant only in the sense that at full power, the voltage in the system does not depend on the number of speakers driven. Constant-voltage speaker systems are also commonly referred to as 25-, 70-, 70.7-, 100 or 210-volt speaker systems; distributed speaker systems; or high-impedance speaker systems. In Canada and the US, they are most commonly referred to as 70-volt speakers. In Europe, the 100 V system is the most widespread, with amplifier and speaker products being simply labeled with 100 V.
The moving iron speaker was the earliest type of electric loudspeaker. They are still used today in some miniature speakers where small size and low cost are more important than sound quality. A moving iron speaker consists of a ferrous-metal diaphragm or reed, a permanent magnet and a coil of insulated wire. The coil is wound around the permanent magnet to form a solenoid. When an audio signal is applied to the coil, the strength of the magnetic field varies, and the springy diaphragm or reed moves in response to the varying force on it. The moving iron loudspeaker Bell telephone receiver was of this form. Large units had a paper cone attached to a ferrous metal reed.
Tube sound is the characteristic sound associated with a vacuum tube amplifier, a vacuum tube-based audio amplifier. At first, the concept of tube sound did not exist, because practically all electronic amplification of audio signals was done with vacuum tubes and other comparable methods were not known or used. After introduction of solid state amplifiers, tube sound appeared as the logical complement of transistor sound, which had some negative connotations due to crossover distortion in early transistor amplifiers. However, solid state amplifiers have been developed to be flawless and the sound is later regarded neutral compared to tube amplifiers. Thus the tube sound now means 'euphonic distortion.' The audible significance of tube amplification on audio signals is a subject of continuing debate among audio enthusiasts.
Nominal impedance in electrical engineering and audio engineering refers to the approximate designed impedance of an electrical circuit or device. The term is applied in a number of different fields, most often being encountered in respect of: