Electromagnetic reverberation chamber

Last updated

A look inside the (large) Reverberation Chamber at the Otto-von-Guericke-University Magdeburg, Germany. On the left side is the vertical Mode Stirrer (or Tuner), that changes the electromagnetic boundaries to ensure a (statistically) homogeneous field distribution. Magdeburg-reverberation chamber.jpg
A look inside the (large) Reverberation Chamber at the Otto-von-Guericke-University Magdeburg, Germany. On the left side is the vertical Mode Stirrer (or Tuner), that changes the electromagnetic boundaries to ensure a (statistically) homogeneous field distribution.

An electromagnetic reverberation chamber (also known as a reverb chamber (RVC) or mode-stirred chamber (MSC)) is an environment for electromagnetic compatibility (EMC) testing and other electromagnetic investigations. Electromagnetic reverberation chambers have been introduced first by H.A. Mendes in 1968. [1] A reverberation chamber is screened room with a minimum of absorption of electromagnetic energy. Due to the low absorption very high field strength can be achieved with moderate input power. A reverberation chamber is a cavity resonator with a high Q factor. Thus, the spatial distribution of the electrical and magnetic field strengths is strongly inhomogeneous (standing waves). To reduce this inhomogeneity, one or more tuners (stirrers) are used. A tuner is a construction with large metallic reflectors that can be moved to different orientations in order to achieve different boundary conditions. The Lowest Usable Frequency (LUF) of a reverberation chamber depends on the size of the chamber and the design of the tuner. Small chambers have a higher LUF than large chambers.

Contents

The concept of a reverberation chamber is comparable to a microwave oven.

Glossary/notation

Preface

The notation is mainly the same as in the IEC standard 61000-4-21. [2] For statistic quantities like mean and maximal values, a more explicit notation is used in order to emphasize the used domain. Here, spatial domain (subscript ) means that quantities are taken for different chamber positions, and ensemble domain (subscript ) refers to different boundary or excitation conditions (e.g. tuner positions).

General

Statistics

Theory

Cavity resonator

A reverberation chamber is cavity resonator—usually a screened room—that is operated in the overmoded region. To understand what that means we have to investigate cavity resonators briefly.

For rectangular cavities, the resonance frequencies (or eigenfrequencies, or natural frequencies) are given by

where is the speed of light, , and are the cavity's length, width and height, and , , are non-negative integers (at most one of those can be zero).

With that equation, the number of modes with an eigenfrequency less than a given limit , , can be counted. This results in a stepwise function. In principle, two modes—a transversal electric mode and a transversal magnetic mode —exist for each eigenfrequency.

The fields at the chamber position are given by

Due to the boundary conditions for the E- and H field, some modes do not exist. The restrictions are: [3]

A smooth approximation of , , is given by

The leading term is proportional to the chamber volume and to the third power of the frequency. This term is identical to Weyl's formula.

Comparison of the exact and the smoothed number of modes for the Large Magdeburg Reverberation Chamber. Cummodes.svg
Comparison of the exact and the smoothed number of modes for the Large Magdeburg Reverberation Chamber.

Based on the mode density is given by

An important quantity is the number of modes in a certain frequency interval , , that is given by

Quality factor

The Quality Factor (or Q Factor) is an important quantity for all resonant systems. Generally, the Q factor is defined by where the maximum and the average are taken over one cycle, and is the angular frequency.

The factor Q of the TE and TM modes can be calculated from the fields. The stored energy is given by

The loss occurs in the metallic walls. If the wall's electrical conductivity is and its permeability is , the surface resistance is

where is the skin depth of the wall material.

The losses are calculated according to

For a rectangular cavity follows [4]

Using the Q values of the individual modes, an averaged Composite Quality Factor can be derived: [5]

includes only losses due to the finite conductivity of the chamber walls and is therefore an upper limit. Other losses are dielectric losses e.g. in antenna support structures, losses due to wall coatings, and leakage losses. For the lower frequency range the dominant loss is due to the antenna used to couple energy to the room (transmitting antenna, Tx) and to monitor the fields in the chamber (receiving antenna, Rx). This antenna loss is given by where is the number of antenna in the chamber.

The quality factor including all losses is the harmonic sum of the factors for all single loss processes:

Resulting from the finite quality factor the eigenmodes are broaden in frequency, i.e. a mode can be excited even if the operating frequency does not exactly match the eigenfrequency. Therefore, more eigenmodes are exited for a given frequency at the same time.

The Q-bandwidth is a measure of the frequency bandwidth over which the modes in a reverberation chamber are correlated. The of a reverberation chamber can be calculated using the following:

Using the formula the number of modes excited within results to

Related to the chamber quality factor is the chamber time constant by

That is the time constant of the free energy relaxation of the chamber's field (exponential decay) if the input power is switched off.

See also

Notes

  1. Mendes, H.A.: A new approach to electromagnetic field-strength measurements in shielded enclosures., Wescon Tech. Papers, Los Angeles, CA., August, 1968.
  2. IEC 61000-4-21: Electromagnetic compatibility (EMC) – Part 4-21: Testing and measurement techniques – Reverberation chamber test methods, Ed. 2.0, January, 2011. ()
  3. Cheng, D.K.: Field and Wave Electromagnetics, Addison-Wesley Publishing Company Inc., Edition 2, 1998. ISBN   0-201-52820-7
  4. Chang, K.: Handbook of Microwave and Optical Components, Volume 1, John Wiley & Sons Inc., 1989. ISBN   0-471-61366-5.
  5. Liu, B.H., Chang, D.C., Ma, M.T.: Eigenmodes and the Composite Quality Factor of a Reverberating Chamber, NBS Technical Note 1066, National Bureau of Standards, Boulder, CO., August 1983.

Related Research Articles

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

<span class="mw-page-title-main">Bremsstrahlung</span> Electromagnetic radiation due to deceleration of charged particles

In particle physics, bremsstrahlung is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.

<span class="mw-page-title-main">Fourier series</span> Decomposition of periodic functions into sums of simpler sinusoidal forms

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Special unitary group</span> Group of unitary matrices with determinant of 1

In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields.

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form

<span class="mw-page-title-main">Hurwitz zeta function</span> Special function in mathematics

In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by

<span class="mw-page-title-main">Radon transform</span> Integral transform

In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line. The transform was introduced in 1917 by Johann Radon, who also provided a formula for the inverse transform. Radon further included formulas for the transform in three dimensions, in which the integral is taken over planes. It was later generalized to higher-dimensional Euclidean spaces and more broadly in the context of integral geometry. The complex analogue of the Radon transform is known as the Penrose transform. The Radon transform is widely applicable to tomography, the creation of an image from the projection data associated with cross-sectional scans of an object.

<span class="mw-page-title-main">Directional statistics</span>

Directional statistics is the subdiscipline of statistics that deals with directions, axes or rotations in Rn. More generally, directional statistics deals with observations on compact Riemannian manifolds including the Stiefel manifold.

<span class="mw-page-title-main">Lemniscate elliptic functions</span> Mathematical functions

In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.

In condensed matter physics and crystallography, the static structure factor is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation of scattering patterns obtained in X-ray, electron and neutron diffraction experiments.

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section. It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and published by Poiseuille in 1840–41 and 1846. The theoretical justification of the Poiseuille law was given by George Stokes in 1845.

In mathematics, Maass forms or Maass wave forms are studied in the theory of automorphic forms. Maass forms are complex-valued smooth functions of the upper half plane, which transform in a similar way under the operation of a discrete subgroup of as modular forms. They are eigenforms of the hyperbolic Laplace operator defined on and satisfy certain growth conditions at the cusps of a fundamental domain of . In contrast to modular forms, Maass forms need not be holomorphic. They were studied first by Hans Maass in 1949.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

In mathematics, the oscillator representation is a projective unitary representation of the symplectic group, first investigated by Irving Segal, David Shale, and André Weil. A natural extension of the representation leads to a semigroup of contraction operators, introduced as the oscillator semigroup by Roger Howe in 1988. The semigroup had previously been studied by other mathematicians and physicists, most notably Felix Berezin in the 1960s. The simplest example in one dimension is given by SU(1,1). It acts as Möbius transformations on the extended complex plane, leaving the unit circle invariant. In that case the oscillator representation is a unitary representation of a double cover of SU(1,1) and the oscillator semigroup corresponds to a representation by contraction operators of the semigroup in SL(2,C) corresponding to Möbius transformations that take the unit disk into itself.

References