Energy density Extended Reference Table

Last updated

This is an extended version of the energy density table from the main Energy density page:

Energy densities table
Storage type Specific energy (MJ/kg)Energy density (MJ/L)Peak recovery efficiency  %Practical recovery efficiency %
Arbitrary Antimatter 89,875,517,874depends on density
Deuterium–tritium fusion 576,000,000 [1]
Uranium-235 fissile isotope144,000,000 [1] 1,500,000,000
Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor 86,000,000
Reactor-grade uranium (3.5% U-235) in light-water reactor 3,456,000 35%
Pu-238 α-decay2,200,000
Hf-178m2 isomer 1,326,00017,649,060
Natural uranium (0.7% U235) in light-water reactor 443,000 35%
Ta-180m isomer 41,340689,964
Metallic hydrogen (recombination energy)216 [2]
Specific orbital energy of Low Earth orbit (approximate)33.0
Beryllium + Oxygen 23.9 [3]
Lithium + Fluorine 23.75[ citation needed ]
Octaazacubane potential explosive22.9 [4]
Hydrogen + Oxygen 13.4 [5]
Gasoline + Oxygen –> Derived from Gasoline 13.3[ citation needed ]
Dinitroacetylene explosive - computed[ citation needed ]9.8
Octanitrocubane explosive8.5 [6] 16.9 [7]
Tetranitrotetrahedrane explosive - computed[ citation needed ]8.3
Heptanitrocubane explosive - computed[ citation needed ]8.2
Sodium (reacted with chlorine)[ citation needed ]7.0349
Hexanitrobenzene explosive7 [8]
Tetranitrocubane explosive - computed[ citation needed ]6.95
Ammonal (Al+NH4NO3 oxidizer)[ citation needed ]6.912.7
Tetranitromethane + hydrazine bipropellant - computed[ citation needed ]6.6
Nitroglycerin 6.38 [9] 10.2 [10]
ANFO-ANNM [ citation needed ]6.26
battery, Lithium–air 6.12
Octogen (HMX)5.7 [9] 10.8 [11]
TNT [12] 4.6106.92
Copper Thermite (Al + CuO as oxidizer)[ citation needed ]4.1320.9
Thermite (powder Al + Fe2O3 as oxidizer)4.0018.4
Hydrogen peroxide decomposition (as monopropellant)2.73.8
battery, Lithium-ion nanowire 2.5495%[ clarification needed ] [13]
battery, Lithium Thionyl Chloride (LiSOCl2) [14] 2.5
Water 220.64 bar, 373.8 °C[ citation needed ][ clarification needed ]1.9680.708
Kinetic energy penetrator [ clarification needed ]1.930
battery, Lithium–Sulfur [15] 1.80 [16] 1.26
battery, Fluoride-ion [ citation needed ]1.72.8
battery, Hydrogen closed cycle H fuel cell [17] 1.62
Hydrazine decomposition (as monopropellant)1.61.6
Ammonium nitrate decomposition (as monopropellant)1.42.5
Thermal Energy Capacity of Molten Salt 1[ citation needed ]98% [18]
Molecular spring approximate[ citation needed ]1
battery, Lithium–Manganese [19] [20] 0.83-1.011.98-2.09
battery, Sodium–Sulfur 0.72 [21] 1.23[ citation needed ]85% [22]
battery, Lithium-ion [23] [24] 0.46-0.720.83-3.6 [25] 95% [26]
battery, Sodium–Nickel Chloride, High Temperature0.56
battery, Zinc–manganese (alkaline), long life design [19] [23] 0.4-0.591.15-1.43
battery, Silver-oxide [19] 0.471.8
Flywheel 0.36-0.5 [27] [28]
5.56 × 45 mm NATO bullet muzzle energy density[ clarification needed ]0.43.2
battery, Nickel–metal hydride (NiMH), low power design as used in consumer batteries [29] 0.41.55
Liquid Nitrogen 0.349
WaterEnthalpy of Fusion 0.3340.334
battery, Zinc–Bromine flow (ZnBr) [30] 0.27
battery, Nickel–metal hydride (NiMH), High-Power design as used in cars [31] 0.2500.493
battery, Nickel–Cadmium (NiCd) [23] 0.141.0880% [26]
battery, Zinc–Carbon [23] 0.130.331
battery, Lead–acid [23] 0.140.36
battery, Vanadium redox 0.09[ citation needed ]0.118870-75%
battery, Vanadium–Bromide redox 0.180.25280%–90% [32]
Capacitor Ultracapacitor 0.0199 [33] 0.050[ citation needed ]
Capacitor Supercapacitor 0.01[ citation needed ]80%–98.5% [34] 39%–70% [34]
Superconducting magnetic energy storage 0.008 [35] >95%
Capacitor 0.002 [36]
Neodymium magnet 0.003 [37]
Ferrite magnet 0.0003 [37]
Spring power (clock spring), torsion spring 0.0003 [38] 0.0006
Storage typeEnergy density by mass (MJ/kg)Energy density by volume (MJ/L)Peak recovery efficiency %Practical recovery efficiency %

Notes

  1. 1 2 Prelas, Mark (2015). Nuclear-Pumped Lasers. Springer. p. 135. ISBN   9783319198453.
  2. Silvera, Isaac F; Cole, John W (2010-03-01). "Metallic hydrogen: The most powerful rocket fuel yet to exist". Journal of Physics: Conference Series. 215 (1): 012194. Bibcode:2010JPhCS.215a2194S. doi:10.1088/1742-6596/215/1/012194. ISSN   1742-6596.
  3. Cosgrove, Lee A.; Snyder, Paul E. (2002-05-01). "The Heat of Formation of Beryllium Oxide1". Journal of the American Chemical Society. 75 (13): 3102–3103. doi:10.1021/ja01109a018.
  4. Glukhovtsev, Mikhail N.; Jiao, Haijun; Schleyer, Paul von Ragué (1996-05-28). "Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?†". Inorganic Chemistry. 35 (24): 7124–7133. doi:10.1021/ic9606237. PMID   11666896.
  5. Miller, Catherine (1 February 2021). "Introduction to Rocket Propulsion" (PDF). Archived from the original (PDF) on 9 May 2021. Retrieved 9 May 2021.
  6. Wiley Interscience
  7. Octanitrocubane
  8. Wiley Interscience
  9. 1 2 "Chemical Explosives". Fas.org. 2008-05-30. Retrieved 2010-05-07.
  10. Nitroglycerin
  11. HMX
  12. Kinney, G.F.; K.J. Graham (1985). Explosive shocks in air. Springer-Verlag. ISBN   978-3-540-15147-0.
  13. "Nanowire battery can hold 10 times the charge of existing lithium-ion battery". News-service.stanford.edu. 2007-12-18. Archived from the original on 2010-01-07. Retrieved 2010-05-07.
  14. "Lithium Thionyl Chloride Batteries". Nexergy. Archived from the original on 2009-02-04. Retrieved 2010-05-07.
  15. "Lithium Sulfur Rechargeable Battery Data Sheet" (PDF). Sion Power, Inc. 2005-09-28. Archived from the original (PDF) on 2008-08-28.
  16. Kolosnitsyn, V.S.; E.V. Karaseva (2008). "Lithium-sulfur batteries: Problems and solutions". Russian Journal of Electrochemistry. 44 (5): 506–509. doi:10.1134/s1023193508050029. S2CID   97022927.
  17. "The Unitized Regenerative Fuel Cell". Llnl.gov. 1994-12-01. Archived from the original on 2008-09-20. Retrieved 2010-05-07.
  18. "Technology". SolarReserve. Archived from the original on 2008-01-19. Retrieved 2010-05-07.
  19. 1 2 3 "ProCell Lithium battery chemistry". Duracell. Archived from the original on 2011-07-10. Retrieved 2009-04-21.
  20. "Properties of non-rechargeable lithium batteries". corrosion-doctors.org. Retrieved 2009-04-21.
  21. "New battery could change world, one house at a time". Heraldextra.com. 2009-04-04. Archived from the original on 2015-10-17. Retrieved 2010-05-07.
  22. Kita, A.; Misaki, H.; Nomura, E.; Okada, K. (August 1984). "Energy Citations Database (ECD) - - Document #5960185". Proc., Intersoc. Energy Convers. Eng. Conf.; (United States). 2. Osti.gov. OSTI   5960185.
  23. 1 2 3 4 5 "Battery energy storage in various battery types". AllAboutBatteries.com. Archived from the original on 2009-04-28. Retrieved 2009-04-21.
  24. A typically available lithium-ion cell with an Energy Density of 201 wh/kg "Li-Ion 18650 Cylindrical Cell 3.6V 2600mAh - Highest Energy Density Cell in Market (LC-18650H4) - LC-18650H4". Archived from the original on 2008-12-01. Retrieved 2012-12-14.
  25. "Lithium Batteries". Archived from the original on 2011-08-08. Retrieved 2010-07-02.
  26. 1 2 Justin Lemire-Elmore (2004-04-13). "The Energy Cost of Electric and Human-Powered Bicycles" (PDF). p. 7. Archived from the original (PDF) on 2012-09-13. Retrieved 2009-02-26. Table 3: Input and Output Energy from Batteries
  27. "Storage Technology Report, ST6 Flywheel" (PDF). Archived from the original (PDF) on 2013-01-14. Retrieved 2012-12-14.
  28. "Next-gen Of Flywheel Energy Storage". Product Design & Development. Archived from the original on 2010-07-10. Retrieved 2009-05-21.
  29. "Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008" (PDF). Archived from the original (PDF) on 2010-01-04. Retrieved 2012-12-14.
  30. "ZBB Energy Corp". Archived from the original on 2007-10-15. 75 to 85 watt-hours per kilogram
  31. High Energy Metal Hydride Battery Archived 2009-09-30 at the Wayback Machine
  32. "Microsoft Word - V-FUEL COMPANY AND TECHNOLOGY SHEET 2008.doc" (PDF). Archived from the original (PDF) on 2010-11-22. Retrieved 2010-05-07.
  33. "Maxwell Technologies: Ultracapacitors - BCAP3000". Maxwell.com. Retrieved 2010-05-07.
  34. 1 2 Zdenek, Cerovský; Pavel, Mindl. "Hybrid drive with super-capacitor energy storage" (PDF). Faculty of Mechanical Engineering CTU in Prague. Archived from the original (PDF) on 2012-07-22. Retrieved 2012-12-14.
  35. Archived February 16, 2010, at the Wayback Machine
  36. "Department of Computing". Archived from the original on 2006-10-06. Retrieved 2012-12-14.
  37. 1 2 Rahman, M.; Slemon, G. (September 1985). "Promising applications of neodymium boron Iron magnets in electrical machines" (PDF). IEEE Transactions on Magnetics. 21 (5): 1712–1716. Bibcode:1985ITM....21.1712R. doi:10.1109/TMAG.1985.1064113. ISSN   0018-9464. Archived from the original (PDF) on 13 May 2011.
  38. "Garage Door Springs". Garagedoor.org. Retrieved 2010-05-07.