Eoarchean geology

Last updated

Eoarchean geology is the study of the oldest preserved crustal fragments of Earth during the Eoarchean era from 4.031 to 3.6 billion years ago. Major well-preserved rock units dated to this era are known from three localities, the Isua Greenstone Belt in Southwest Greenland, the Acasta Gneiss in the Slave Craton in Canada, and the Nuvvuagittuq Greenstone Belt in the eastern coast of Hudson Bay in Quebec. From the dating of rocks in these three regions, scientists suggest that the beginning of plate tectonics could have started as far back as early as the Eoarchean.

Contents

A tonalite-trondhjemite and gneiss outcrop in Grimstad, Norway. TTG is a prevalent rock type in archean formations. Grimstad e39 inntjore west IMG 3853 geology tonalite-trondhjemite and gneiss.JPG
A tonalite-trondhjemite and gneiss outcrop in Grimstad, Norway. TTG is a prevalent rock type in archean formations.

All three regions contain an abundance of Archean felsic volcanic rocks, including tonalite, trondhjemite and granodiorite (TTG) series rocks, [1] [ failed verification ] with minor granulite to amphibolite facies gneiss complexes, which means that the original characters of the rocks has been disturbed by at least one ductile deformation at deep crustal conditions. [2] [ failed verification ]

Eoarchean geology is important in investigating Earth's tectonic history. It is because the planet had just undergone a transformation to the present-day-similar convective mode and lithosphere from a magma ocean in Hadean Eon, to either a protoplate tectonics or an unstable stagnant lithosphere lid at its infant stages. [3] The earth's condition during Archean to Proterozoic (including Eoarchean era) serves as a crucial linkage between Hadean magma ocean to present-day plate tectonics. [3] Various interpretations have been suggested to explain the prevalent tectonic style corresponding to Eoarchean geology. However it can be, in general, classified into two tectonic models, which are vertical tectonics and plate tectonics. [3]

Explanation on the release of large amount of mantle heat is the prominent concern. Most of the evidences shows a probability that pre-plate tectonics dominantly involved intense surface volcanism, active magmatism and crustal recycling.

Occurrence of Eoarchean rocks

Eoarchean geology is dominated by:

  1. Mafic to ultramafic volcanics
  2. Tonalite-trondhjemite-granodiorite (TTG)
  3. Chemical sedimentary rocks such as chert and Banded-Iron-Formations (BIF)
  4. Subordinate clastic sedimentary rocks.
Distribution of Preserved Eoarchean rocks on earth crust
NameAge of the formationLocationDominant rock typeRemarks
Acasta Gneisses4.03 Ga to 3.96 GaSlave Craton in Northwest CanadaHighly deformed TTG, with interleaving amphibolite, ultramafic rocks and pink granites
Napier Complex3.95 Ga to 3.8 GaEnderby Land, AntarcticaTTG, which has sedimentary protoliths
Itsaq Gneiss ComplexAkulleq terrance at 3.9 Ga to 3.8 GaSouthwest GreenlandAmitsoq TTG complexThe largest and best-preserved fragment of Eoarchean continental crust
Saglek-Hebron block3.86 Ga to 3.73 GaEast coast of Labradorsupracrustal assemblage in Nulliak unit; Gneiss in Uivak unitsThe region is divided into three regions; they are Nulliak, Uivak I and Uivak II
Nuvvuagittuq Supracrustal Beltabout 3.8 GaSuperior Province, QuebecTwo greenstone assemblage successions (1) Conglomerate, Garnet paragneisses, chemical sedimentary rocks

(2) Volcanic rocks, magic to intermediate tuff and chemical sedimentary rocks

There are some zircons dated back to the Eoarchean, but this does not necessarily indicate the host rock was formed in the Eoarchean, in

(1) Anshan Area in North China Craton [4]

(2) Sebakwe Protocraton in Zimbabwe Craton [4]

World Map showing the location of the most prominent well-preserved Eoarchean geology 1.Acasta Gneiss 2.Nuvvuagittuq Greenstone Belt 3.Saglek-Hebron Block 4.Itsaq Gneiss Complex 5.Napier Complex a.Sebakwe protocraton b.Anshan Eoarchean World occurrence.jpg
World Map showing the location of the most prominent well-preserved Eoarchean geology 1.Acasta Gneiss 2.Nuvvuagittuq Greenstone Belt 3.Saglek-Hebron Block 4.Itsaq Gneiss Complex 5.Napier Complex a.Sebakwe protocraton b.Anshan

Isua Supracrustal Belt and the Isua Area

Map of Isua Area. Between the 3.7 Ga region (Marked in red) and the 3.8 Ga region (Marked in Green), it is the Isua Supracrustal Belt. It is located near Nuuk in Greenland (Inspired by Nutman et al., 2009, Modified for use) Isua2.png
Map of Isua Area. Between the 3.7 Ga region (Marked in red) and the 3.8 Ga region (Marked in Green), it is the Isua Supracrustal Belt. It is located near Nuuk in Greenland (Inspired by Nutman et al., 2009, Modified for use)

The Isua Greenstone Belt, also known as the Isua supracrustal belt, is found at the Isukasia terrane in Southern West Greenland and hosts the oldest and well-preserved sedimentary and volcanic rocks dated between 3.7 and 3.8 billion years old. The 35-km long, 4 km wide greenstone belt had been deformed into a thin U-shape [5] pointing to the Southwest direction with an approximate diameter of 25 km. [6] It consists mainly of amphibolite metamorphosed from basalt, with chemical rocks, felsic units and ultra mafic units. The upper amphibolite metamorphic grade of these rocks, with local retrogressions, has stabilised (black) hornblende; these rocks are not "greenstones" because they experienced metamorphism well beyond greenschist facies. Nevertheless, the term "Isua Greenstone Belt" lingers on in the literature. [2]

The Isua Supracrustal Belt (ISB) is part of the Itsaq Gneiss Complex, in which most of the lithology are orthogneiss. [2] Local orthogneisses were previously named after Amîtsoq Gneiss. Geologists often regionally divide the entire Isua Area into two parts along the ISB. The core of the U-shaped Isua belt, or the "northern gneisses", are mostly tonalite to granitic rock, [7] while the south to the belt or the "southern gneisses" are similar granitoid rocks. [7] Contacts between the ISB and the gneisses are in general strongly deformed and myloitic. [7]

The tectonic style responsible for the Isua area is still controversial. Either vertical plate tectonics [8] or proto-plate tectonics with subduction is viable. [2] Geologists who are proto-plate tectonic advocates often divide the Isua area into northern and southern terrane by the average dated age from the gneiss in each terrane. [9] Between these two chronologically different regions, a thin sedimentary unit lying in the Isua Supracrustal Belt is the dividing boundary. [2] These two terrane were juxtaposed and assembled between either 3680 to 3660 Ma [10] or 3650 to 3600 Ma. [11]

Lithologies

The Isua Supracrustal Belt was mostly deformed during the Eoarchean. In many areas, primary volcanic and sedimentary structures were obliterated. [10] However, in rare low strain areas, the original protolith structure is still visible. The major lithologies in the Isua belt are (1) tonalites of the Itsaq/Amîtsoq gneiss, (2) Basaltic pillow lava and pillow breccia, and (3) Banded Iron formations. [2]

Presence of the above lithologies enables study of the paleo-environment:

  1. paragneisses sometimes show graded felsic clast units, which means a derivation from felsic volcanic or felsic volcano-sedimentary rock. [11]
  2. Presence of pillow-structured lava and breccia indicates that there was liquid water in the eoarchean. [11]
  3. Banded Iron Formations (BIF), with a minor metachert unit, is an indicator for coeval deposition of aqueous clastic and chemical sediment. [11]

A Subsequent U-Pb zircon-dating program demonstrated that the belt contains supracrustal rocks ranging in age from 3.8 to 3.7 billion years ago, [12] having only a ~100 million year variation of age within the belt. [12] 3.8 billion year old rocks are predominantly concentrated at the southern part of the belt while the 3.7 billion old counterpart are located at the centre and northern part. [12] The sequence experienced three isolated phases of metamorphism, at least one of them in the early Archean. It is argued this highly developed metamorphic history precludes assignment of these rocks as "greenstones". [7]

Similar looking Itsaq Gneiss bounds the Isua belt from North and from the South.

North of the Isua Supracrustal Belt

To the north, the Isua supracrustal belt is bounded by orthogneisses. Dominant tonalitic gneisses show a protolith age of about 3.7 billion years. [12] A low strain area of several square kilometres is observed in the northeast part of the Isua Belt. [9] Dominant phases are foliated metatonalites, with additional 3660 Ma diorite and 3655 to 3640 Ma granite and pegmatite. [13] Measured ages from the tonalites in the northern terrane are between 3720 and 3690 Ma, [2] which is 100 million years younger than those in the southern region.

South of the Isua Supracrustal Belt

The Southern region is mostly composed of a comparable orthogneiss to the northern region. However, the ages yielded from the protoliths are between 3872 and 3700 Ma. [9] The ages of the rock are generally 100 million years older than that in the northern terrane.

Amphibolites showing localised pillow structure reflects a submarine basaltic environment in the past. [2] Zircon overgrowth indicates an event of high-grade metamorphism between 3660 and 3650 Ma. [9]

Tectonics

Proto-plate tectonics in the Isua area in the Eoarchean - this sequence covers the collision of the 3.8 Ga region to the 3.7 Ga region between 3690 Ma to 3660 Ma. Inspired by Nutman et al., 2009. Modified for use Isua Evol.png
Proto-plate tectonics in the Isua area in the Eoarchean – this sequence covers the collision of the 3.8 Ga region to the 3.7 Ga region between 3690 Ma to 3660 Ma. Inspired by Nutman et al., 2009. Modified for use

Subduction and lateral proto-plate tectonics

The Isua Greenstone Belt is currently under heavy investigation as it provides a unique opportunity to study early earth's tectonics. There is no single widely accepted tectonic explanation for the formation of the Isua supracrustal belt and the adjacent area, although some viable models have been proposed. One of the suggested explanations is proto-plate tectonics, with a convergent plate margin environment. [2]

A 3660 Ma to 3690 Ma collision can be speculated to have occurred between the northern 3.7 Ga region and the 3.8 Ga region, along a thin layer of sedimentary dividing unit in the Isua Greenstone belt.

Both terranes shows episodic deposition of volcanic tonalite-trondhjemite-granodiorite (TTG). These TTGs are between 3720 and 3710 Ma old, with the composition of these relatively juvenile igneous rocks showing that it is sourced from partial melting of eclogitized mafic material, with high magnesium but low silica content. This can be explained by the partial melting of a subducted slab, which would mean the environment was comparable to a convergent plate boundary or a subduction zone setting. [10]

A thin metasedimentary unit derived mainly from banded iron formations, chert and carbonate rocks is believed to be the dividing unit between the 3.8 Ga region and 3.7 Ga region. In some well-exposed area, highly tectonized and recrystallised mylonites are present. [2]

Collision of the old and new block happened between 3690 Ma and 3660 Ma, [2] since 3690 Ma was the age yielded from the youngest tonalite, [11] which is only found in the Northern terrane. This can be interpreted as indicative of a much further distance between the northern region and the southern region at 3690 Ma than we see today. 3660 Ma is the age measured from the ultramafic-to-dioritic Inaluk dykes, [11] which is a common intrusion in both terrane. This potentially brackets the time of collision between these two intrusive events.

Alternative tectonic model: vertical tectonics

As plumes and impact structures are observed in Isua area, it is postulated that "vertical tectonics"[ clarification needed ] are also a viable method to reconstruct the Eoarchean Isua Area. [11] In addition, the material found in lateral transport thrusts has been recorded from both plume-related volcanic centers and in impact centres. This hypothesis however currently lacks crucial evidence for vertical tectonics, such as dome-and-syncline regional diapirs. [8]

Acasta Gneiss Complex

The Acasta Gneiss Complex is located in the western part of the Slave Province, [14] and is well exposed along the Acasta river. The Acasta Gnessis Complex contains the oldest known felsic rocks on Earth, with ages up to 4.02 Ga [15] [16] but have rocks as young as 2.95 Ga. [17] It is part of the Slave Province which covers an area approximately 190,000 km2. After the initial documentation of very ancient zircons present in the Acasta River area, [15] a significant scientific debate regarding the true age of these important rocks was born. Some geologists suggested that all rocks in the Acasta region were highly metamorphosed and altered 3.3 billion years ago, so that their zircon ages were not reflective of the true ages of the rocks. [18] This debate culminated in a series of papers and comments regarding the discrepancy between zircon age information and whole-rock data. [19] [20] [21] The age debate has been mostly resolved by further work in the Acasta area by several research groups as well as the general acceptance by the scientific community of using in situ zircon U-Pb to obtain ages from complicated rocks. Although complicated rocks, with multiple age domains mixed together, do certainly exist in the Acasta region, [22] much simpler rocks are definitively present as well [23] [24] so the entire Complex was clearly not wholesale overprinted by 3.3 Ga metamorphism. The oldest known rock unit in the Acasta region is a 4.02 Ga tonalitic unit termed the Idiwhaa Tonalitic Gneiss. [23]

Notably, one xenocrystic zircon core, which was included in a 3.92 Ga gneiss, has been dated to 4.2 Ga, which is the oldest age recorded in the Acasta area. [25] However, the rock that originally grew this zircon has not been found, and it may not even exist anymore. The ages of rocks in the Acasta Gneiss Complex have peaks at 3.92-4.02 Ga, 3.75 Ga, 3.6 Ga, and 3.4 Ga [17] [24] which document major crust forming events.

Map of Acasta Gneiss Complex. Adopted and modified from Koshida et al., 2016 Acasta Acasta.png
Map of Acasta Gneiss Complex. Adopted and modified from Koshida et al., 2016

Lithologies

Dominant rocks in the region are variably deformed tonalitic, granodioritic, and granitic, and amphibolitic gneisses. [14] [24] [17] Mafic rocks such as amphibolite and ultramafic rocks are also present in the Acasta Gneiss Complex and occur in variable proportions throughout the Complex. A north-east trending fault divides the area into two domains. [24]

Eastern domain

The eastern area has an abundance of relatively massive tonalitic, granodioritic and granitic gneiss and gabbroic, dioritic and quartz-dioritic gneisses are present. [24] Four episodes of tonalite-granite emplacement shows ages of 3.94–4.02, 3.74, 3.66 and 3.59 Ga. [1] [17]

Western Domain

The western area is dominated by layered quartz dioritic to dioritic, tonalitic to granitic gneiss and young foliated granitic intrusions. [24] It shows a formation of the granitic protolith of the layered gneiss at 3.97 Ga, followed by a 3.58 Gyr old granitic intrusion, which has been foliated. [1]

Mafic enclaves and inclusions

Mafic rocks are distributed within the entire Acasta Gneiss Complex as minor blocks such as enclaves and bands. The mafic rocks consist of massive to slightly foliated amphibolite, garnet amphibolite as well as hornblendite. [1] [17] [24] Mineral composition indicates that they had experienced metamorphism between amphibolite to upper amphibolite facies. [1]

Tectonics

Though there is no well-accepted tectonic setting that formed the Acasta Gneiss Complex, various hypotheses have been proposed. First, the oldest rocks in the Acasta region, the Idiwhaa Tonalitic Gneiss, shows a distinctive geochemistry of high Fe but low Mg content, and a relatively flat REE pattern. Compositions like this occur in very few locations on the modern Earth, including modern Iceland. This led to the idea that the earliest phase of crust formation in the Acasta region occurred by petrologic processes similar to modern Iceland, that is, shallow intrusion of dry basalts and partial melting at low pressures. [17] [23] Something changed at 3.6 Ga however, as the rocks formed in the Acasta Gneiss Complex have very different geochemical signatures at this time. This led to proposals for a subduction-like setting, or mobile-lid setting, at 3.6 Ga in the Acasta area. [26] Other authors, using the Thorium-to-niobium ratio in the amphibolites, suggested that subduction occurred much earlier, closer to 4.0 Ga. [1]

Nuvvuagittuq Greenstone Belt and adjacent TTG

The Nuvvuagittuq Greenstone Belt (NGB) is located in Northern Quebec, covering approximately 8 km2 of the Hudson Bay. [27] It resembles a north-closing synform that plunges towards the south. [27]

The true age of the NGB is debated. Some argue that it is between 4.4 Ga [28] and 3.8 Ga old. [29] The 4.4-Ga-old ages for cummingtonite-amphibolites in NGB do not, by their low isotopic ratio of 142-Neodymium  to 144-Neodymium, represent that the mafic host rock is also of Hadean age.[ clarification needed ] Significantly, the oldest detrital zircon with high correspondence to the host rock yielded an age of 3780 Ma that is argued to define the maximum age of these rocks. [29]

Lithologies

An Overview Map of the Nuvvuagituq Greenstone Belt and its adjacent TTGs. Inspired by and modified from O'Neil et al., 2012 and O'Neil et al. 2013. Nuvv.png
An Overview Map of the Nuvvuagituq Greenstone Belt and its adjacent TTGs. Inspired by and modified from O'Neil et al., 2012 and O'Neil et al. 2013.

The Nuvvuagituq Greenstone Belt is divided into three lithological units: [30] [31]

The Ujaraaluk unit is an amphibolite enriched in cummingtonite, plagioclase and biotite, and depleted in hornblende, Gabbroic and ultramafic intrusive bodies, and a chemical sedimentary protolith, i.e. banded iron formations (BIF) and banded silicate formations (BSF). [32]

Within the largest unit, the cummingtonite amphibolite, a progression of garnet content and a regression of chlorite and epidote from west to east shows an intensification of metamorphism of amphibolite from green-schist facies to an upper-amphibolite facies. [30]

Surrounding tonalites, trondhjemites and granodiorites

The Nuvvuagituq Belt is bounded by Eoarchean tonalites, trondhjemites and granodiorite aged around 3660 Ma, and further surrounded by younger approximately 2750 Ma tonalities. [33] Surrounding tonalites, trondhjemites and granodiorites (TTGs) are the product of partial melting of Hadean Mafic lithologies, which was similar to the informally-named Ujaraaluk unit. The remelt products of Hadean Ujaraaluk and the exposed, eoarhcean cummingtonite amphibolite unit share a similar geochemical composition, i.e. isotopic ratio of 142-Neodymiun and 144-Neodymium, which suggests that these isotopic ratios can be inherited from one generation of melt to another. [27] The TTG-Felsic crusts formed in multiple episodes. By U-Pb zircon geochronology, the fourfold episodic TTGs were dated to be 3.76 Ga, 3.66 Ga, 3.5–3.4 Ga and 3.35 Ga in age. [33]

Tectonics

Proto-plate tectonics

Crustal recycling produced the TTGs surrounding the Nuvvuagituq Belt from arc-like source rocks, i.e. the Ujaraaluk Unit. A large scale simultaneous accumulation of TTGs and subsequent partial melting only occurs in particular tectonic settings. [28] It is speculated that their origin is related to crustal recycling in which the mafic crust and water were returned to the mantle, and as a consequence, arc-like mafic magma formed. [28] This resembles a subduction system in modern plate tectonics, but the geologic evidence is still insufficient to draw direct parallels.

Related Research Articles

<span class="mw-page-title-main">Acasta Gneiss</span> Metamorphic rock unit in Canada

The Acasta Gneiss Complex, also called the Acasta Gneiss, is a body of felsic to ultramafic Archean basement rocks, gneisses, that form the northwestern edge of the Slave Craton in the Northwest Territories, Canada, about 300 km (190 mi) north of Yellowknife, Canada. This geologic complex consists largely of tonalitic and granodioritic gneisses and lesser amounts of mafic and ultramafic gneisses. It underlies and is largely concealed by thin, patchy cover of Quaternary glacial sediments over an area of about 13,000 km2 (5,000 sq mi). The Acasta Gneiss Complex contains fragments of the oldest known crust and record of more than a billion years of magmatism and metamorphism. The Acasta Gneiss Complex is exposed in a set of anticlinoriums within the foreland fold and thrust belt of the Paleoproterozoic Wopmay Orogen.

<span class="mw-page-title-main">Narryer Gneiss terrane</span> Geological complex of ancient rocks in Western Australia

The Narryer Gneiss terrane is a geological complex in Western Australia that is composed of a tectonically interleaved and polydeformed mixture of granite, mafic intrusions and metasedimentary rocks in excess of 3.3 billion years old, with the majority of the Narryer Gneiss terrane in excess of 3.6 billion years old. The rocks have experienced multiple metamorphic events at amphibolite or granulite conditions, resulting in often complete destruction of original igneous or sedimentary (protolith) textures. Importantly, it contains the oldest known samples of the Earth's crust: samples of zircon from the Jack Hills portion of the Narryer Gneiss have been radiometrically dated at 4.4 billion years old, although the majority of zircon crystals are about 3.6-3.8 billion years old.

<span class="mw-page-title-main">Yilgarn Craton</span> Large craton in Western Australia

The Yilgarn Craton is a large craton that constitutes a major part of the Western Australian land mass. It is bounded by a mixture of sedimentary basins and Proterozoic fold and thrust belts. Zircon grains in the Jack Hills, Narryer Terrane have been dated at ~4.27 Ga, with one detrital zircon dated as old as 4.4 Ga.

<span class="mw-page-title-main">Oldest dated rocks</span> Includes rocks over 4 billion years old from the Hadean Eon

The oldest dated rocks formed on Earth, as an aggregate of minerals that have not been subsequently broken down by erosion or melted, are more than 4 billion years old, formed during the Hadean Eon of Earth's geological history, and mark the start of the Archean Eon, which is defined to start with the formation of the oldest intact rocks on Earth.

<span class="mw-page-title-main">Isua Greenstone Belt</span> Archean greenstone belt in southwestern Greenland

The Isua Greenstone Belt is an Archean greenstone belt in southwestern Greenland, aged between 3.7 and 3.8 billion years. The belt contains variably metamorphosed mafic volcanic and sedimentary rocks, and is the largest exposure of Eoarchaean supracrustal rocks on Earth. Due to its age and low metamorphic grade relative to many Eoarchaean rocks, the Isua Greenstone Belt has become a focus for investigations on the emergence of life and the style of tectonics that operated on the early Earth.

<span class="mw-page-title-main">Slave Craton</span> Area of ancient rocks in northwest Canada

The Slave Craton is an Archaean craton in the north-western Canadian Shield, in Northwest Territories and Nunavut. The Slave Craton includes the 4.03 Ga-old Acasta Gneiss which is one of the oldest dated rocks on Earth. Covering about 300,000 km2 (120,000 sq mi), it is a relatively small but well-exposed craton dominated by ~2.73–2.63 Ga greenstones and turbidite sequences and ~2.72–2.58 Ga plutonic rocks, with large parts of the craton underlain by older gneiss and granitoid units. The Slave Craton is one of the blocks that compose the Precambrian core of North America, also known as the palaeocontinent Laurentia.

<span class="mw-page-title-main">Kaapvaal Craton</span> Archaean craton, possibly part of the Vaalbara supercontinent

The Kaapvaal Craton, along with the Pilbara Craton of Western Australia, are the only remaining areas of pristine 3.6–2.5 Ga crust on Earth. Similarities of rock records from both these cratons, especially of the overlying late Archean sequences, suggest that they were once part of the Vaalbara supercontinent.

<span class="mw-page-title-main">Barberton Greenstone Belt</span> Ancient granite-greenstone terrane in South Africa

The Barberton Greenstone Belt is a geologic formation situated on the eastern edge of the Kaapvaal Craton in South Africa. It is known for its gold mineralisation and for its komatiites, an unusual type of ultramafic volcanic rock named after the Komati River that flows through the belt. Some of the oldest exposed rocks on Earth are located in the Barberton Greenstone Belt of the Eswatini–Barberton areas and these contain some of the oldest traces of life on Earth, second only to the Isua Greenstone Belt of Western Greenland. The Makhonjwa Mountains make up 40% of the Baberton belt. It is named after the town Barberton, Mpumalanga.

Supracrustal rocks are rocks that were deposited on the existing basement rocks of the crust, hence the name. They may be further metamorphosed from both sedimentary and volcanic rocks.

<span class="mw-page-title-main">Nuvvuagittuq Greenstone Belt</span> Geologic sequence in Quebec, Canada

The Nuvvuagittuq Greenstone Belt is a sequence of metamorphosed mafic to ultramafic volcanic and associated sedimentary rocks located on the eastern shore of Hudson Bay, 40 km southeast of Inukjuak, Quebec. These rocks have undergone extensive metamorphism, and represent some of the oldest surface rocks on Earth.

<span class="mw-page-title-main">Lewisian complex</span> Suite of Precambrian metamorphic rocks that outcrop in the northwestern part of Scotland

The Lewisian complex or Lewisian gneiss is a suite of Precambrian metamorphic rocks that outcrop in the northwestern part of Scotland, forming part of the Hebridean Terrane and the North Atlantic Craton. These rocks are of Archaean and Paleoproterozoic age, ranging from 3.0–1.7 billion years (Ga). They form the basement on which the Stoer Group, Wester Ross Supergroup and probably the Loch Ness Supergroup sediments were deposited. The Lewisian consists mainly of granitic gneisses with a minor amount of supracrustal rocks. Rocks of the Lewisian complex were caught up in the Caledonian orogeny, appearing in the hanging walls of many of the thrust faults formed during the late stages of this tectonic event.

<span class="mw-page-title-main">Tectonic evolution of the Barberton greenstone belt</span> Evolutionary history of ancient continental crust remnant located in southeastern Africa

The Barberton greenstone belt (BGB) is located in the Kapvaal craton of southeastern Africa. It characterizes one of the most well-preserved and oldest pieces of continental crust today by containing rocks in the Barberton Granite Greenstone Terrain (3.55–3.22 Ga). The BGB is a small, cusp-shaped succession of volcanic and sedimentary rocks, surrounded on all sides by granitoid plutons which range in age from >3547 to <3225 Ma. It is commonly known as the type locality of the ultramafic, extrusive volcanic rock, the komatiite. Greenstone belts are geologic regions generally composed of mafic to ultramafic volcanic sequences that have undergone metamorphism. These belts are associated with sedimentary rocks that occur within Archean and Proterozoic cratons between granitic bodies. Their name is derived from the green hue that comes from the metamorphic minerals associated with the mafic rocks. These regions are theorized to have formed at ancient oceanic spreading centers and island arcs. In simple terms, greenstone belts are described as metamorphosed volcanic belts. Being one of the few most well-preserved Archean portions of the crust, with Archean felsic volcanic rocks, the BGB is well studied. It provides present geologic evidence of Earth during the Archean (pre-3.0 Ga). Despite the BGB being a well studied area, its tectonic evolution has been the cause of much debate.

<span class="mw-page-title-main">Eastern Pilbara Craton</span> Carton in Western Australia

The Eastern Pilbara Craton is the eastern portion of the Pilbara Craton located in Western Australia. This region contains variably metamorphosed mafic and ultramafic greenstone belt rocks, intrusive granitic dome structures, and volcanic sedimentary rocks. These greenstone belts worldwide are thought to be the remnants of ancient volcanic belts, and are subject to much debate in today's scientific community. Areas such as Isua and Barberton which have similar lithologies and ages as Pilbara have been argued to be subduction accretion arcs, while others suggest that they are the result of vertical tectonics. This debate is crucial to investigating when/how plate tectonics began on Earth. The Pilbara Craton along with the Kaapvaal Craton are the only remaining areas of the Earth with pristine 3.6–2.5 Ga crust. The extremely old and rare nature of this crustal region makes it a valuable resource in the understanding of the evolution of the Archean Earth.

<span class="mw-page-title-main">Huangling Anticline</span> Group of rock units in the Yangtze Block, South China

The Huangling Anticline or Complex represents a group of rock units that appear in the middle of the Yangtze Block in South China, distributed across Yixingshan, Zigui, Huangling, and Yichang counties. The group of rock involves nonconformity that sedimentary rocks overlie the metamorphic basement. It is a 73-km long, asymmetrical dome-shaped anticline with axial plane orientating in the north-south direction. It has a steeper west flank and a gentler east flank. Basically, there are three tectonic units from the anticline core to the rim, including Archean to Paleoproterozoic metamorphic basement, Neoproterozoic to Jurassic sedimentary rocks, and Cretaceous fluvial deposit sedimentary cover. The northern part of the core is mainly tonalite-trondhjemite-gneiss (TTG) and Cretaceous sedimentary rock called the Archean Kongling Complex. The middle of the core is mainly the Neoproterozoic granitoid. The southern part of the core is the Neoproterozoic potassium granite. Two basins are situated on the western and eastern flanks of the core, respectively, including the Zigui basin and Dangyang basin. Both basins are synforms while Zigui basin has a larger extent of folding. Yuanan Graben and Jingmen Graben are found within the Dangyang Basin area. The Huangling Anticline is an important area that helps unravel the tectonic history of the South China Craton because it has well-exposed layers of rock units from Archean basement rock to Cretaceous sedimentary rock cover due to the erosion of the anticline.

<span class="mw-page-title-main">Hadean zircon</span> Oldest-surviving crustal material from the Earths earliest geological time period

Hadean zircon is the oldest-surviving crustal material from the Earth's earliest geological time period, the Hadean eon, about 4 billion years ago. Zircon is a mineral that is commonly used for radiometric dating because it is highly resistant to chemical changes and appears in the form of small crystals or grains in most igneous and metamorphic host rocks.

<span class="mw-page-title-main">Tonalite–trondhjemite–granodiorite</span> Intrusive rocks with typical granitic composition

Tonalite–trondhjemite–granodiorite (TTG) rocks are intrusive rocks with typical granitic composition but containing only a small portion of potassium feldspar. Tonalite, trondhjemite, and granodiorite often occur together in geological records, indicating similar petrogenetic processes. Post Archean TTG rocks are present in arc-related batholiths, as well as in ophiolites, while Archean TTG rocks are major components of Archean cratons.

<span class="mw-page-title-main">Archean felsic volcanic rocks</span> Felsic volcanic rocks formed in the Archean Eon

Archean felsic volcanic rocks are felsic volcanic rocks that were formed in the Archean Eon. The term "felsic" means that the rocks have silica content of 62–78%. Given that the Earth formed at ~4.5 billion year ago, Archean felsic volcanic rocks provide clues on the Earth's first volcanic activities on the Earth's surface started 500 million years after the Earth's formation.

<span class="mw-page-title-main">Eastern Block of the North China Craton</span> Fragment of Earths crust

The Eastern Block of the North China Craton is one of the Earth's oldest pieces of continent. It is separated from the Western Block by the Trans-North China Orogen. It is situated in northeastern China and North Korea. The Block contains rock exposures older than 2.5 billion years. It serves as an ideal place to study how the crust was formed in the past and the related tectonic settings.

The Akia terrane is a tectonostratigraphic terrane located in the North Atlantic Craton in southern West Greenland. The Akia terrane is bounded to the Southeast by the Eo- to Neo-archaean tectonostratigraphic terranes of the Nuuk region, and to the North by the recently recognised Alanngua Complex, which separates the Akia terrane from the Neoarchaean Tuno terrane. The crust in the Akia terrane formed in two major pulses. The first at ~3.2 Ga, predominantly comprises dioritic gneisses, whereas the second, at ~3.0 Ga comprises a more diverse mix of TTG and dioritic gneisses with enclaves of supracrustal rocks and mafic-ultramafic intrusions. Supracrustal rocks are largely tholeiitic and calc-alkaline amphibolites formed at ~3.07 Ga. The mafic-ultramafic intrusions include peridotite cumulates and a belt of noritic intrusions formed at the same time as the TTG gneisses, the Maniitsoq Norite Belt. Various tectonic settings have been proposed for the 3.0 Ga crust forming event, including subduction related magmatism, stagnant lid tectonic processes, and crust and mantle melting in an ultra-hot orogeny.

<span class="mw-page-title-main">Dharwar Craton</span> Part of the Indian Shield in south India

The Dharwar Craton is an Archean continental crust craton formed between 3.6-2.5 billion years ago (Ga), which is located in southern India and considered the oldest part of the Indian peninsula.

References

  1. 1 2 3 4 5 6 Koshida, Keiko; Ishikawa, Akira; Iwamori, Hikaru; Komiya, Tsuyoshi (2016). "Petrology and geochemistry of mafic rocks in the Acasta Gneiss Complex: Implications for the oldest mafic rocks and their origin". Precambrian Research. 283: 190–207. Bibcode:2016PreR..283..190K. doi:10.1016/j.precamres.2016.07.004.
  2. 1 2 3 4 5 6 7 8 9 10 11 Nutman, Allen P.; Friend, Clark R.L. (2009). "New 1:20,000 scale geological maps, synthesis and history of investigation of the Isua supracrustal belt and adjacent orthogneisses, southern West Greenland: A glimpse of Eoarchaean crust formation and orogeny". Precambrian Research. 172 (3–4): 189–211. Bibcode:2009PreR..172..189N. doi:10.1016/j.precamres.2009.03.017.
  3. 1 2 3 Stern, Robert J. (2008). "Modern-style plate tectonics began in Neoproterozoic time: An alternative interpretation of Earth's tectonic history". The Geological Society Special Paper. 440: 265–279.
  4. 1 2 Condie, Kent (2007). "The distribution of Paleoarchean crusts". Development in Precambrian Geology. 15. doi:10.1016/S0166-2635(07)15012-X.
  5. Polat, A.; Hofmann, A. W. (2003). "Alteration and geochemical patterns in the 3.7–3.8Ga Isua greenstone belt, West Greenland". Precambrian Research. 126 (3–4): 197–218. Bibcode:2003PreR..126..197P. doi:10.1016/S0301-9268(03)00095-0.
  6. Crowley, J.L. (2003). "U–Pb geochronology of 3810–3630 Ma granitoid rocks south of the Isua greenstone belt, southern West Greenland". Precambrian Research. 126 (3–4): 235–257. Bibcode:2003PreR..126..235C. doi:10.1016/S0301-9268(03)00097-4.
  7. 1 2 3 4 Rollison, Hugh (2003). "Metamorphic history suggested by garnet-growth chronologies in the Isua Greenstone Belt, West Greenland". Precambrian Research. 126 (3–4): 181–196. Bibcode:2003PreR..126..181R. doi:10.1016/S0301-9268(03)00094-9.
  8. 1 2 Moore, William B.; Webb, A. Alexander G. (2013). "Heat-pipe Earth". Nature. 501 (7468): 501–505. Bibcode:2013Natur.501..501M. doi:10.1038/nature12473. PMID   24067709. S2CID   4391599.
  9. 1 2 3 4 Nutman, Allen P.; Friend, Clark R. L.; Kinny, Peter D.; McGregor, Victor R. (2013). "Anatomy of an Early Archean gneiss complex: 3900 to 3600 Ma crustal evolution in southern West Greenland". Geology. 21 (5): 415–418. doi:10.1130/0091-7613(1993)021<0415:AOAEAG>2.3.CO;2.
  10. 1 2 3 Nutman, Allen P.; Bennett, Vickie C.; Friend, Clark L.; Hidaka, Hiroshi; Yi, Keewook; Lee, Seung Ryeol; Kamichi, Tomoyuki (2013). "The Itsaq Gneiss complex of Greenland: Episodic 3900 to 3660 Ma Juvenile crust formation and recycling in the 3660 to 3600 Ma Isukasian Orogeny". American Journal of Science. 313 (9): 877–911. Bibcode:2013AmJS..313..877N. doi:10.2475/09.2013.03. hdl: 1885/32777 . S2CID   56090267.
  11. 1 2 3 4 5 6 7 Nutman, Allen P.; Friend, Clark R.L.; Bennett, Vickie C. (2002). "Evidence for 3650–3600 Ma assembly of the northern end of the Itsaq Gneiss Complex, Greenland: Implication for early Archaean tectonics". Tectonics. 21 (1): 5-1 –5-28. Bibcode:2002Tecto..21.1005N. doi: 10.1029/2000TC001203 .
  12. 1 2 3 4 Nutman, A.P.; McGregor, V. R.; Friend, C.R.L.; Bennett, V.C.; Kinny, P.D. (1996). "The Itsaq Gneiss Complex of southern West Greenland; the world's most extensive record of early crustal evolution (3900–3600 Ma)". Precambrian Research. 78 (1–3): 1–39. Bibcode:1996PreR...78....1N. doi:10.1016/0301-9268(95)00066-6.
  13. Nutman, A. P.; Bennett, V.C.; Friend, C.R.:.; McGregor, V.R. (2000). "The early Archaean Itsaq Gneiss Complex of southern West Greenland: the importance of field observations in interpreting age and isotopic constraints for early terrestrial evolution". Geochimica et Cosmochimica Acta. 64 (17): 3035–3060. Bibcode:2000GeCoA..64.3035N. doi:10.1016/S0016-7037(99)00431-7.
  14. 1 2 St-Onge, M R; King, J E; Lalonde, A E (1988). "Geology, East - Central Wopmay Orogen, District of Mackenzie, Northwest Territories". doi: 10.4095/130452 .{{cite journal}}: Cite journal requires |journal= (help)
  15. 1 2 Bowring, S. A.; Williams, I. S.; Compston, W. (1989). "3.96 Ga gneisses from the Slave province, Northwest Territories, Canada". Geology. 17 (11): 971. Bibcode:1989Geo....17..971B. doi:10.1130/0091-7613(1989)017<0971:ggftsp>2.3.co;2. ISSN   0091-7613.
  16. Reimink, J. R.; Davies, J. H. F. L.; Chacko, T.; Stern, R. A.; Heaman, L. M.; Sarkar, C.; Schaltegger, U.; Creaser, R. A.; Pearson, D. G. (2016-09-19). "No evidence for Hadean continental crust within Earth's oldest evolved rock unit". Nature Geoscience. 9 (10): 777–780. Bibcode:2016NatGe...9..777R. doi:10.1038/ngeo2786. ISSN   1752-0894.
  17. 1 2 3 4 5 6 Reimink, Jesse R.; Chacko, Thomas; Stern, Richard A.; Heaman, Larry M. (August 2016). "The birth of a cratonic nucleus: Lithogeochemical evolution of the 4.02–2.94Ga Acasta Gneiss Complex". Precambrian Research. 281: 453–472. Bibcode:2016PreR..281..453R. doi:10.1016/j.precamres.2016.06.007. ISSN   0301-9268.
  18. Moorbath, S.; Whitehouse, M.J.; Kamber, B.S. (March 1997). "Extreme Nd-isotope heterogeneity in the early Archaean — fact or fiction? Case histories from northern Canada and West Greenland". Chemical Geology. 135 (3–4): 213–231. Bibcode:1997ChGeo.135..213M. doi:10.1016/s0009-2541(96)00117-9. ISSN   0009-2541.
  19. Whitehouse, Martin J.; Nagler, Thomas F.; Moorbath, Stephen; Kramers, Jan D.; Kamber, Balz S.; Frei, Robert (2001-03-29). "Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada - by Samuel A. Bowring and Ian S. Williams: discussion". Contributions to Mineralogy and Petrology. 141 (2): 248–250. Bibcode:2001CoMP..141..248W. doi:10.1007/s004100100240. ISSN   0010-7999. S2CID   128838719.
  20. Sanborn, N; Stern, R; Desgreniers, S; Botton, G A (2000). "Microstructure of Neoarchean zircon from the Acasta gneiss complex, Northwest Territories; Radiogenic age and isotopic studies: Report 13". doi: 10.4095/211627 .{{cite journal}}: Cite journal requires |journal= (help)
  21. Bowring, Samuel A.; Williams, Ian S. (1999-01-21). "Priscoan (4.00-4.03 Ga) orthogneisses from northwestern Canada". Contributions to Mineralogy and Petrology. 134 (1): 3–16. Bibcode:1999CoMP..134....3B. doi:10.1007/s004100050465. ISSN   0010-7999. S2CID   128376754.
  22. Mojzsis, Stephen J.; Cates, Nicole L.; Caro, Guillaume; Trail, Dustin; Abramov, Oleg; Guitreau, Martin; Blichert-Toft, Janne; Hopkins, Michelle D.; Bleeker, Wouter (May 2014). "Component geochronology in the polyphase ca. 3920Ma Acasta Gneiss". Geochimica et Cosmochimica Acta. 133: 68–96. Bibcode:2014GeCoA.133...68M. doi:10.1016/j.gca.2014.02.019. ISSN   0016-7037.
  23. 1 2 3 Reimink, J.R.; Chacko, T.; Stern, R.A.; Heaman, L.M. (2014). "Earth's earliest evolved crust generated in an Iceland-like setting". Nature Geoscience. 7 (7): 529–533. Bibcode:2014NatGe...7..529R. doi:10.1038/ngeo2170.
  24. 1 2 3 4 5 6 7 Iizuka, Tsuyoshi; Komiya, Tsuyoshi; Ueno, Yuichiro; Katayama, Ikuo; Uehara, Yosuke; Maruyama, Shigenori; Hirata, Takafumi; Johnson, Simon P.; Dunkley, Daniel J. (2007). "Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: New constraints on its tectonothermal history". Precambrian Research. 153 (3–4): 179–208. Bibcode:2007PreR..153..179I. doi:10.1016/j.precamres.2006.11.017.
  25. Iizuka, Tsuyoshi; Horie, Kenji; Komiya, Tsuyoshi; Maruyama, Shigenori; Hirata, Takafumi; Hidaka, Hiroshi; Windley, Brian F. (2006). "4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: Evidence for early continental crust". Geology. 34 (4): 245. Bibcode:2006Geo....34..245I. doi:10.1130/g22124.1. ISSN   0091-7613.
  26. Reimink, Jesse R.; Chacko, Thomas; Carlson, Richard W.; Shirey, Steven B.; Liu, Jingao; Stern, Richard A.; Bauer, Ann M.; Pearson, D. Graham; Heaman, Larry M. (July 2018). "Petrogenesis and tectonics of the Acasta Gneiss Complex derived from integrated petrology and 142nd and 182W extinct nuclide-geochemistry". Earth and Planetary Science Letters. 494: 12–22. Bibcode:2018E&PSL.494...12R. doi: 10.1016/j.epsl.2018.04.047 . ISSN   0012-821X. S2CID   135327282.
  27. 1 2 3 O'Neil, Jonathan; Carlson, Richard W.; Paquette, Jean-Louis; Francis, Don (2012). "Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt" (PDF). Precambrian Research. 220–221: 23–44. Bibcode:2012PreR..220...23O. doi:10.1016/j.precamres.2012.07.009.
  28. 1 2 3 Adam, John; Rushmer, Tracy; O'Neil, Jonathan; Francis, Don (2012). "Hadean greenstones from the Nuvvuagittuq fold belt and the origin of the Earth's early continental crust". Geology. 40 (4): 363–366. Bibcode:2012Geo....40..363A. doi:10.1130/G32623.1.
  29. 1 2 Cates, Nicole L.; Ziegler, Karen; Schmitt, Axel K.; Mojzsis, Stephen J. (2013). "Reduced, reused and recycled: Detrital zircons define a maximum age for the Eoarchean (ca. 3750–3780 Ma) Nuvvuagittuq Supracrustal Belt, Québec (Canada)". Earth and Planetary Science Letters. 362: 283–293. Bibcode:2013E&PSL.362..283C. doi:10.1016/j.epsl.2012.11.054.
  30. 1 2 O'Neil, J.; Maurice, C.; Stevenson, R. K.; Larocque, J.; Cloquet, C.; David, J.; Francis, D. (2007). The Geology of the 3.8 Ga Nuvvuagittuq (Porpoise Cove) Greenstone Belt, Northeastern Superior Province, Canada. Vol. 15. pp. 219–250. doi:10.1016/S0166-2635(07)15034-9. ISBN   9780444528100.{{cite book}}: |journal= ignored (help)
  31. O'Neil, J.; Carlson, R. W.; Francis, D.; Stevenson, R. K. (2008). "Neodymium-142 evidence for Hadean Mafic Crust". Science. 321 (5897): 1828–1831. Bibcode:2008Sci...321.1828O. doi:10.1126/science.1161925. PMID   18818357. S2CID   206514655.
  32. Mloszewska, Aleksandra; Pecoits, Ernesto; Cates, Nicole L.; Mojzsis, Stephen J.; O'Neil, Jonathan; Robbins, Leslie J.; Konhauser, Kurt O. (2011). "The composition of Earth's oldest iron formations: The Nuvvuagittuq Supracrustal Belt (Québec, Canada)". Earth and Planetary Science Letters. 317–318: 331–342. Bibcode:2012E&PSL.317..331M. doi:10.1016/j.epsl.2011.11.020.
  33. 1 2 O'Neil, Jonathan; Boyet, Maud; Carlson, Richard W.; Paquette, Jean-Louis (2013). "Half a billion years of reworking of Hadean mafic crust to produce the Nuvvuagittuq Eoarchean felsic crust". Earth and Planetary Science Letters. 379: 13–25. Bibcode:2013E&PSL.379...13O. doi:10.1016/j.epsl.2013.07.030.