Essential dimension

Last updated

In mathematics, essential dimension is an invariant defined for certain algebraic structures such as algebraic groups and quadratic forms. It was introduced by J. Buhler and Z. Reichstein [1] and in its most generality defined by A. Merkurjev. [2]

Contents

Basically, essential dimension measures the complexity of algebraic structures via their fields of definition. For example, a quadratic form q : VK over a field K, where V is a K-vector space, is said to be defined over a subfield L of K if there exists a K-basis e1,...,en of V such that q can be expressed in the form with all coefficients aij belonging to L. If K has characteristic different from 2, every quadratic form is diagonalizable. Therefore, q has a field of definition generated by n elements. Technically, one always works over a (fixed) base field k and the fields K and L in consideration are supposed to contain k. The essential dimension of q is then defined as the least transcendence degree over k of a subfield L of K over which q is defined.

Formal definition

Fix an arbitrary field k and let Fields/k denote the category of finitely generated field extensions of k with inclusions as morphisms. Consider a (covariant) functor F : Fields/k Set . For a field extension K/k and an element a of F(K/k) a field of definition of a is an intermediate field K/L/k such that a is contained in the image of the map F(L/k) → F(K/k) induced by the inclusion of L in K.

The essential dimension of a, denoted by ed(a), is the least transcendence degree (over k) of a field of definition for a. The essential dimension of the functor F, denoted by ed(F), is the supremum of ed(a) taken over all elements a of F(K/k) and objects K/k of Fields/k.

Examples

Known results

Related Research Articles

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

In mathematics, in particular algebraic geometry, a moduli space is a geometric space whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is formal moduli. Bernhard Riemann first used the term "moduli" in 1857.

In mathematics, the GrassmannianGr(k, V) is a space that parameterizes all k-dimensional linear subspaces of the n-dimensional vector space V. For example, the Grassmannian Gr(1, V) is the space of lines through the origin in V, so it is the same as the projective space of one dimension lower than V.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In mathematics, an algebraic torus, where a one dimensional torus is typically denoted by , , or , is a type of commutative affine algebraic group commonly found in projective algebraic geometry and toric geometry. Higher dimensional algebraic tori can be modelled as a product of algebraic groups . These groups were named by analogy with the theory of tori in Lie group theory. For example, over the complex numbers the algebraic torus is isomorphic to the group scheme , which is the scheme theoretic analogue of the Lie group . In fact, any -action on a complex vector space can be pulled back to a -action from the inclusion as real manifolds.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.

In mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.

In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors. Both are derived from the notion of divisibility in the integers and algebraic number fields.

In mathematics, a Witt group of a field, named after Ernst Witt, is an abelian group whose elements are represented by symmetric bilinear forms over the field.

In algebraic geometry, a Fourier–Mukai transformΦK is a functor between derived categories of coherent sheaves D(X) → D(Y) for schemes X and Y, which is, in a sense, an integral transform along a kernel object K ∈ D(X×Y). Most natural functors, including basic ones like pushforwards and pullbacks, are of this type.

In mathematics, the affine Grassmannian of an algebraic group G over a field k is an ind-scheme—a colimit of finite-dimensional schemes—which can be thought of as a flag variety for the loop group G(k((t))) and which describes the representation theory of the Langlands dual group LG through what is known as the geometric Satake correspondence.

In mathematics, an approximately finite-dimensional (AF) C*-algebra is a C*-algebra that is the inductive limit of a sequence of finite-dimensional C*-algebras. Approximate finite-dimensionality was first defined and described combinatorially by Ola Bratteli. Later, George A. Elliott gave a complete classification of AF algebras using the K0 functor whose range consists of ordered abelian groups with sufficiently nice order structure.

<span class="mw-page-title-main">Algebraic number field</span> Finite degree (and hence algebraic) field extension of the field of rational numbers

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

This is a glossary of algebraic geometry.

In mathematics, a cohomological invariant of an algebraic group G over a field is an invariant of forms of G taking values in a Galois cohomology group.

In mathematics, the base change theorems relate the direct image and the inverse image of sheaves. More precisely, they are about the base change map, given by the following natural transformation of sheaves:

References

  1. Buhler, J.; Reichstein, Z. (1997). "On the essential dimension of a finite group". Compositio Mathematica. 106 (2): 159–179. doi: 10.1023/A:1000144403695 .
  2. Berhuy, G.; Favi, G. (2003). "Essential Dimension: a Functorial Point of View (after A. Merkurjev)". Documenta Mathematica. 8: 279–330 (electronic).