Eurybia elvina

Last updated

Blind eurybia
Blind Eurybia Sipping Nectar from Psychotria - Flickr - treegrow.jpg
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Species:
E. elvina
Binomial name
Eurybia elvina
Stichel, 1910 [1]

Eurybia elvina, commonly known as the blind eurybia, is a Neotropical metalmark butterfly. Like many other riodinids, the caterpillars are myrmecophilous and have tentacle nectary organs that exude a fluid similar to that produced by the host plant Calathea ovandensis. This mutualistic relationship allows ants to harvest the exudate, and in return provide protection in the form of soil shelters for larvae. The larvae communicate with the ants by vibrations produced by the movement of its head. The species was described and given its binomial name by the German lepidopterist Hans Stichel in 1910.

Contents

Life cycle

As in all butterflies, E. elvina are holometabolous and have four distinct development stages: egg, larva, pupa and adult. It takes a total of 45 days for an adult to eclose from an egg. [2] [3]

Egg

The females lay the eggs on the upper surface of leaves, leaf petioles, or on the inflorescence of neotropical plants such as Calathea ovandensis. The eggs are not laid in a clutch, but are generally isolated. Sometimes, however, they may be found in widely spaced groups of five or fewer eggs. It takes, on average, 3 days for the first instar of larva to hatch out of the egg. [2]

Larval stages

The butterfly goes through five distinct larval instars. The instars vary in terms of their distinct morphological structure and size differences. Characteristic of myrmecophilous riodinids, all the larval stages possess Tentacle Nectary Organ (TNO) on the eighth abdominal segment. This organ plays an important role in the species' interactions with ants. [4] [2] [5]

First instar

The first instar emerges from the egg by chewing through the micropyle. The body of the caterpillar is pale-yellow in color with a black head capsule. This coloration acts as a camouflage against the corolla of the host plant (Calathea spp.) on which the caterpillars are found. They feed on all parts of the flower and grow from a length of 1.5 mm to 4.5 mm. The dorsal setae of this instar are much longer than those of the other instars. The first instar period lasts for an average of 4.5 days. [2]

Second instar

The second instar is similar to the first instar in its body coloration, with the exception of the head capsule, which is brownish-yellow in color. The foremost segment of the thorax is covered by a protective black shield into which the head of the caterpillar is partially retractable. The caterpillar possesses dark red segments on its mid-dorsal and lateral sides. Similar to the first instar, the second instar possesses dorsal setae that arise from the hardened cuticle (chalazae) of the caterpillar. The diet of this instar includes buds, flowers, and the developing fruits of the host plant. During this development period, the larvae grow from 4.5mm to 7mm in length. They molt to the third instar on an average of 4.2 days. [2]

Third instar

The third instar is similar to the second instar except that it is larger in size. When freshly molted, the caterpillar is pale-cream in color, but it gradually changes to a brownish-yellow, and the dorsal bands turn maroon as the stage progresses. The dorsal chalazae may or may not be prominent (visible) in this instar. This instar feeds on the buds, flowers, and developing fruits of the host plant. It grows from a size of about 7 mm to 10 mm during this stage. This instar lasts for an average period of about 6.6 days. [2]

Fourth instar

The body color of the fourth instar varies from a light to dark avocado green. The head is completely retractable under the black and tan prothoracic shield. The dorsal setae and chalazae are reduced. The fourth instar has a similar diet to the previous instars and grows to a length of 14 mm. This stage lasts for an average period of about 6.5 days. [2]

Fifth instar

The final instar is very similar to the fourth instar, but is larger in size (about 20 mm). This instar possesses a similarly bicolored prothoracic shield and reduced dorsal setae. There are dense black dots found laterally along the length of the caterpillar's body during this stage. This instar is bright green in color, which mimics the color of the host plant. This stage lasts for an average period of about 11 days. [2]

Pupa

The pupa is bright green, matching the colors of the young leaves of the host plant on which it is found. It has an incompletely extended white proboscis which resembles a tail. The proboscis eventually extends completely and changes from dark green to brown like the rest of the pupa. The adult emerges from the pupa after approximately 9.5 days. [2]

Adult

The complete metamorphosis from the egg to the adult takes approximately 45 days. The length of the adult ranges from 18.2 – 19.6 mm. In comparison, the proboscis is long, about 33.5 – 38.5 mm, as is characteristic of the genus Eurybia . [6] The adults drink floral nectar from the host plants. The host plants are typically members of the genus Calathea and Ischnosiphon pruniosus. [7]

Pollination

The long proboscis of the adult does not touch the stigma or the pollen of the plant while feeding on C. ovandensis. Thus, they never pollinate the host flowers. Such visits are expected to be detrimental for plant reproduction, as the loss of nectar reduces the plants' success of pollination during future visits. This may also lead to tripping of flowers with no pollen exchange, resulting in reduced fruit-set. However, it has been observed that Eurybia elvina rarely trip flowers. It was found that their ineffective pollination in the study system did not significantly reduce fruit-set. Thus, the adult interaction with the host plant is commensal. [8]

Mutualism with ants

The larval stages of E. elvina have been found in mutualistic associations with several ant species, such as the electric ant , Brachymyrmex musculus, Paratrechina spp. and fire ants among others. This type of an association is generally referred to as Myrmecophily. The Tentacle Nectary Organ (TNO) found that the eighth abdominal segment of the larval stages plays a special role in this interaction. This organ secretes exudates rich in sugars and amino acids which is harvested by the ants. This secretion has been found to be biochemically similar to the nectar produced by the host plant (C. ovandensis). The later instars of the caterpillar position themselves in the inflorescence such that the TNO is presented to the ants at roughly the same level of the nectaries of the flower. Some species of ants build soil shelters around the later instars on the inflorescences. The pupal stages were also attended by ants even though they produce no exudates. It is thought that the association with ants may protect the caterpillar from enemies. [2]

Physiology

Sound Production

A number of riodinid species are known to produce audible signals using epicranial granulations. An experiment to see if this behavior exists in E. elvina was conducted in Soberania National Park, Panama using E. elvina caterpillars and the ant species Ectatomma ruidum. The caterpillar was observed producing 12-15 pulses of sound per second when walking and foraging, either when alone or when accompanied by E. ruidum ants. As they produced sound, the caterpillars oscillated their head laterally, and the sound stopped when the oscillations ceased or when the head region was not in contact with the substrate (branch). The investigators of the experiment were able to discern that E. elvina caterpillars produce sound by oscillating their head in order to scrape the teeth that cover their cervical membrane against the epicranial granulations located on the surface of their heads. [9]

Related Research Articles

Butterfly A group of insects in the order Lepidoptera

Butterflies are insects in the macrolepidopteran clade Rhopalocera from the order Lepidoptera, which also includes moths. Adult butterflies have large, often brightly coloured wings, and conspicuous, fluttering flight. The group comprises the large superfamily Papilionoidea, which contains at least one former group, the skippers, and the most recent analyses suggest it also contains the moth-butterflies. Butterfly fossils date to the Paleocene, about 56 million years ago.

Pupa Life stage of some insects undergoing transformation

A pupa is the life stage of some insects undergoing transformation between immature and mature stages. The pupal stage is found only in holometabolous insects, those that undergo a complete metamorphosis, with four life stages: egg, larva, pupa, and imago. The processes of entering and completing the pupal stage are controlled by the insect's hormones, especially juvenile hormone, prothoracicotropic hormone, and ecdysone. The act of becoming a pupa is called pupation, and the act of emerging from the pupal case is called eclosion or emergence.

<i>Pieris rapae</i> Species of butterfly

Pieris rapae is a small- to medium-sized butterfly species of the whites-and-yellows family Pieridae. It is known in Europe as the small white, in North America as the cabbage white or cabbage butterfly, on several continents as the small cabbage white, and in New Zealand simply as the white butterfly. The butterfly is recognizable by its white color with small black dots on its wings, and it can be distinguished from P. brassicae by the smaller size and lack of the black band at the tip of their forewings.

Lycaenidae Family of butterflies

Lycaenidae is the second-largest family of butterflies, with over 6,000 species worldwide, whose members are also called gossamer-winged butterflies. They constitute about 30% of the known butterfly species.

Riodinidae Butterfly family containing the metalmarks

Riodinidae is the family of metalmark butterflies. The common name "metalmarks" refers to the small, metallic-looking spots commonly found on their wings. The 1532 species are placed in 146 genera. Although mostly Neotropical in distribution, the family is also represented both in the Nearctic and the Palearctic.

<i>Hamearis lucina</i> Species of butterfly

Hamearis lucina, the Duke of Burgundy, the only member of the genus Hamearis, is a European butterfly in the family Riodinidae. For many years, it was known as the "Duke of Burgundy fritillary", because the adult's chequered pattern is strongly reminiscent of "true" fritillaries of the family Nymphalidae.

Geranium bronze Species of butterfly

The geranium bronze or brun des pélargoniums in French, is a butterfly in the family Lycaenidae.

<i>Gangara thyrsis</i> Species of butterfly

Gangara thyrsis, commonly known as the giant redeye, is a butterfly belonging to the family Hesperiidae. It breeds on a number of palm species.

<i>Paratrechina</i> Genus of ants

Paratrechina is one of seven ant genera in the Prenolepis genus-group from the subfamily Formicinae. Six species are included in Paratrechina; one of which, the longhorn crazy ant, is a widespread, pantropical pest.

Myrmecophily

Myrmecophily is the term applied to positive interspecies associations between ants and a variety of other organisms, such as plants, other arthropods, and fungi. Myrmecophily refers to mutualistic associations with ants, though in its more general use, the term may also refer to commensal or even parasitic interactions.

<i>Phengaris rebeli</i> Species of butterfly

Phengaris rebeli, common name mountain Alcon blue, is a species of butterfly in the family Lycaenidae. It was first found and described in Styria, Austria, on Mount Hochschwab around 1700. Although it was initially classified as a subspecies of P. alcon, a European researcher, Lucien A. Berger, designated it as a separate species in 1946. Genetic similarities between P. rebeli and P. alcon have led many researchers to argue that the two are the same species and differences are due to intraspecific variation.

<i>Eriogaster lanestris</i> Species of moth

Eriogaster lanestris, commonly known as the small eggar, is a moth of the family Lasiocampidae that is found across the Palearctic. Unlike many other members of the Lasiocampidae, the small eggar is a social insect. Historically, only eusocial insects like ants, bees, and termites were thought to exhibit complex social organization and communication systems. However, research since the late 20th century has found that E. lanestris, among a number of other phylogenetically related moth and butterfly species, demonstrates social behaviors as well. Larvae spend nearly their entire development in colonies of about 200 individuals, and this grouped social structure offers a number of benefits, from thermoregulation to increased foraging success.

<i>Jalmenus evagoras</i> Species of butterfly

Jalmenus evagoras, the imperial hairstreak, imperial blue, or common imperial blue, is a small, metallic blue butterfly of the family Lycaenidae. It is commonly found in eastern coastal regions of Australia. This species is notable for its unique mutualism with ants of the genus Iridomyrmex. The ants provide protection for juveniles and cues for adult mating behavior. They are compensated with food secreted from J. evagoras larvae. The ants greatly enhance the survival and reproductive success of the butterflies. J. evagoras lives and feeds on Acacia plants, so butterfly populations are localized to areas with preferred species of both host plants and ants.

External morphology of Lepidoptera

The external morphology of Lepidoptera is the physiological structure of the bodies of insects belonging to the order Lepidoptera, also known as butterflies and moths. Lepidoptera are distinguished from other orders by the presence of scales on the external parts of the body and appendages, especially the wings. Butterflies and moths vary in size from microlepidoptera only a few millimetres long, to a wingspan of many inches such as the Atlas moth. Comprising over 160,000 described species, the Lepidoptera possess variations of the basic body structure which has evolved to gain advantages in adaptation and distribution.

<i>Lycaena rubidus</i> Species of butterfly

Lycaena rubidus, the ruddy copper, is a butterfly of the family Lycaenidae. It is found in the western mountains of North America. Adults lay their eggs on plants of the genus Rumex, which later become the larval food plants. This butterfly gets its name from the brightly colored wings of the males, which are important in sexual selection. Its larvae exhibit mutualism with red ants, and are often raised in ant nests until they reach adulthood. Adults are on wing from mid-July to early August.

Singing caterpillars

Singing caterpillars is a term coined by Philip James DeVries, referring to the fact that the larvae of ant-associated butterfly species of the families Riodinidae and Lycaenidae produce substrate borne sounds that attract ants. The study of these symbiotic associations was pioneered by Phil DeVries in Central America, and Naomi Pierce in Australia. Recently, Lucas Kaminski and collaborators are expanding the studies of riodinid-ant symbioses in Brazil.

Bucolus fourneti is a native Australian, small, hairy coccinellid beetle approximately 2.1-4.5 mm in diameter. It was described by Étienne Mulsant in 1850

<i>Niphanda fusca</i> Species of butterfly

Niphanda fusca is a parasitic butterfly primarily found in East Asian countries such as Japan and Korea. It is a "cuckoo-type" parasite of the ant Camponotus japonicus. It utilizes chemical mimicry to trick the host worker ants into adopting it while it is a third-instar caterpillar. From there, it is fed mouth-to-mouth by the worker ants as though it were one of their own young.

<i>Polytela gloriosae</i> Species of moth

Polytela gloriosae, the Indian lily moth or lily caterpillar, is a moth of the family Noctuidae. The species was first described by Johan Christian Fabricius in 1781. It is found in Sri Lanka, India and probably in Indonesia.

<i>Adelotypa annulifera</i> Species of butterfly

Adelotypa annulifera is a species of riodinid butterfly found in South America. It was first described by Frederick DuCane Godman in 1903.

References

  1. Stichel, H. (1924-01-01). "Beiträge zur Kenntnis der Riodinidenfauna Südamerikas. (Lep.) II. Kolumbien". Berliner Entomologische Zeitschrift. 1924 (2): 137–151. doi:10.1002/mmnd.192419240203. ISSN   1860-1324.
  2. 1 2 3 4 5 6 7 8 9 10 Horvitz, Carol C.; Turnbull, Christine; Harvey, Donald J. (1 July 1987). "Biology of Immature Eurybia elvina (Lepidoptera: Riodinidae), a Myrmecophilous Metalmark Butterfly". Annals of the Entomological Society of America. 80 (4): 513–519. doi:10.1093/aesa/80.4.513. ISSN   0013-8746.
  3. Horvitz, Carol C.; Turnbull, Christine; Harvey, Donald J. (1987-07-01). "Biology of Immature Eurybia elvina (Lepidoptera: Riodinidae), a Myrmecophilous Metalmark Butterfly". Annals of the Entomological Society of America. 80 (4): 513–519. doi:10.1093/aesa/80.4.513. ISSN   0013-8746.
  4. DeVries, P. J. (1991). Ecological and evolutionary patterns in myrmecophilous riodinid butterflies.
  5. Maron, John L.; Horvitz, Carol C.; Williams, Jennifer L. (1 March 2010). "Using experiments, demography and population models to estimate interaction strength based on transient and asymptotic dynamics". Journal of Ecology. 98 (2): 290–301. doi: 10.1111/j.1365-2745.2009.01617.x . ISSN   1365-2745.
  6. Bauder, Julia Anne-Sophie; Handschuh, Stephan; Metscher, Brian Douglas; Krenn, Harald Wolfgang (2013-10-01). "Functional morphology of the feeding apparatus and evolution of proboscis length in metalmark butterflies (Lepidoptera: Riodinidae)". Biological Journal of the Linnean Society. 110 (2): 291–304. doi:10.1111/bij.12134. ISSN   0024-4066. PMC   4021108 . PMID   24839308.
  7. DeVries, P. J., Chacon, I. A., & Murray, D. (1992). Toward a better understanding of host use and biodiversity in riodinid butterflies(Lepidoptera). Journal of Research on the Lepidoptera, 31(1), 103-126.
  8. Schemske, Douglas W.; Horvitz, Carol C. (1984). "Variation among Floral Visitors in Pollination Ability: A Precondition for Mutualism Specialization". Science. 225 (4661): 519–521. doi:10.1126/science.225.4661.519. JSTOR   1694004.
  9. Travassos, M. A., Devries, D. J., and Pierce, N. E. 2008. A novel organ and mechanism for larval sound production in butterfly caterpillars: Eurybia elvina (Lepidoptera: Riodinidae).Trop. Lepidoptera Res. 18(1): 20–23.