Eurybia elvina

Last updated

Eurybia elvina
Blind Eurybia Sipping Nectar from Psychotria - Flickr - treegrow.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera
Family: Riodinidae
Genus: Eurybia
Species:
E. elvina
Binomial name
Eurybia elvina
Stichel, 1910 [1]

Eurybia elvina, commonly known as the blind eurybia, is a Neotropical metalmark butterfly. Like many other riodinids, the caterpillars are myrmecophilous and have tentacle nectary organs that exude a fluid similar to that produced by the host plant Calathea ovandensis. This mutualistic relationship allows ants to harvest the exudate, and in return provide protection in the form of soil shelters for larvae. The larvae communicate with the ants by vibrations produced by the movement of its head. The species was described and given its binomial name by the German lepidopterist Hans Stichel in 1910.

Contents

Life cycle

As in all butterflies, E. elvina are holometabolous and have four distinct development stages: egg, larva, pupa and adult. It takes a total of 45 days for an adult to eclose from an egg. [2] [3]

Egg

The females lay the eggs on the upper surface of leaves, leaf petioles, or on the inflorescence of neotropical plants such as Calathea ovandensis. The eggs are not laid in a clutch, but are generally isolated. Sometimes, however, they may be found in widely spaced groups of five or fewer eggs. It takes, on average, 3 days for the first instar of larva to hatch out of the egg. [2]

Larval stages

The butterfly goes through five distinct larval instars. The instars vary in terms of their distinct morphological structure and size differences. Characteristic of myrmecophilous riodinids, all the larval stages possess tentacle nectary organ (TNO) on the eighth abdominal segment. This organ plays an important role in the species' interactions with ants. [4] [2] [5]

First instar

The first instar emerges from the egg by chewing through the micropyle. The body of the caterpillar is pale-yellow in color with a black head capsule. This coloration acts as a camouflage against the corolla of the host plant (Calathea spp.) on which the caterpillars are found. They feed on all parts of the flower and grow from a length of 1.5 mm to 4.5 mm. The dorsal setae of this instar are much longer than those of the other instars. The first instar period lasts for an average of 4.5 days. [2]

Second instar

The second instar is similar to the first instar in its body coloration, with the exception of the head capsule, which is brownish-yellow in color. The foremost segment of the thorax is covered by a protective black shield into which the head of the caterpillar is partially retractable. The caterpillar possesses dark red segments on its mid-dorsal and lateral sides. Similar to the first instar, the second instar possesses dorsal setae that arise from the hardened cuticle (chalazae) of the caterpillar. The diet of this instar includes buds, flowers, and the developing fruits of the host plant. During this development period, the larvae grow from 4.5mm to 7mm in length. They molt to the third instar on an average of 4.2 days. [2]

Third instar

The third instar is similar to the second instar except that it is larger in size. When freshly molted, the caterpillar is pale-cream in color, but it gradually changes to a brownish-yellow, and the dorsal bands turn maroon as the stage progresses. The dorsal chalazae may or may not be prominent (visible) in this instar. This instar feeds on the buds, flowers, and developing fruits of the host plant. It grows from a size of about 7 mm to 10 mm during this stage. This instar lasts for an average period of about 6.6 days. [2]

Fourth instar

The body color of the fourth instar varies from a light to dark avocado green. The head is completely retractable under the black and tan prothoracic shield. The dorsal setae and chalazae are reduced. The fourth instar has a similar diet to the previous instars and grows to a length of 14 mm. This stage lasts for an average period of about 6.5 days. [2]

Fifth instar

The final instar is very similar to the fourth instar, but is larger in size (about 20 mm). This instar possesses a similarly bicolored prothoracic shield and reduced dorsal setae. There are dense black dots found laterally along the length of the caterpillar's body during this stage. This instar is bright green in color, which mimics the color of the host plant. This stage lasts for an average period of about 11 days. [2]

Pupa

The pupa is bright green, matching the colors of the young leaves of the host plant on which it is found. It has an incompletely extended white proboscis which resembles a tail. The proboscis eventually extends completely and changes from dark green to brown like the rest of the pupa. The adult emerges from the pupa after approximately 9.5 days. [2]

Adult

The complete metamorphosis from the egg to the adult takes approximately 45 days. The length of the adult ranges from 18.2 – 19.6 mm. In comparison, the proboscis is long, about 33.5 – 38.5 mm, as is characteristic of the genus Eurybia . [6] The adults drink floral nectar from the host plants. The host plants are typically members of the genus Calathea and Ischnosiphon pruniosus. [7]

Pollination

The long proboscis of the adult does not touch the stigma or the pollen of the plant while feeding on C. ovandensis. Thus, they never pollinate the host flowers. Such visits are expected to be detrimental for plant reproduction, as the loss of nectar reduces the plants' success of pollination during future visits. This may also lead to tripping of flowers with no pollen exchange, resulting in reduced fruit-set. However, it has been observed that Eurybia elvina rarely trip flowers. It was found that their ineffective pollination in the study system did not significantly reduce fruit-set. Thus, the adult interaction with the host plant is commensal. [8]

Mutualism with ants

The larval stages of E. elvina have been found in mutualistic associations with several ant species, such as the electric ant , Brachymyrmex musculus, Paratrechina spp. and fire ants among others. This type of an association is generally referred to as myrmecophily. The tentacle nectary organ (TNO) found that the eighth abdominal segment of the larval stages plays a special role in this interaction. This organ secretes exudates rich in sugars and amino acids which is harvested by the ants. This secretion has been found to be biochemically similar to the nectar produced by the host plant (C. ovandensis). The later instars of the caterpillar position themselves in the inflorescence such that the TNO is presented to the ants at roughly the same level of the nectaries of the flower. Some species of ants build soil shelters around the later instars on the inflorescences. The pupal stages were also attended by ants even though they produce no exudates. It is thought that the association with ants may protect the caterpillar from enemies. [2]

Physiology

Sound production

A number of riodinid species are known to produce audible signals using epicranial granulations. An experiment to see if this behavior exists in E. elvina was conducted in Soberania National Park, Panama using E. elvina caterpillars and the ant species Ectatomma ruidum. The caterpillar was observed producing 12–15 pulses of sound per second when walking and foraging, either when alone or when accompanied by E. ruidum ants. As they produced sound, the caterpillars oscillated their head laterally, and the sound stopped when the oscillations ceased or when the head region was not in contact with the substrate (branch). The investigators of the experiment were able to discern that E. elvina caterpillars produce sound by oscillating their head in order to scrape the teeth that cover their cervical membrane against the epicranial granulations located on the surface of their heads. [9]

Related Research Articles

<span class="mw-page-title-main">Butterfly</span> Group of insects in the order Lepidoptera

Butterflies are winged insects from the lepidopteran suborder Rhopalocera, characterized by large, often brightly coloured wings that often fold together when at rest, and a conspicuous, fluttering flight. The group comprises the superfamilies Hedyloidea and Papilionoidea. The oldest butterfly fossils have been dated to the Paleocene, about 56 million years ago, though they likely originated in the Late Cretaceous, about 101 million years ago.

<span class="mw-page-title-main">Lepidoptera</span> Order of insects including moths and butterflies

Lepidoptera or lepidopterans is an order of winged insects which includes butterflies and moths. About 180,000 species of the Lepidoptera have been described, representing 10% of the total described species of living organisms, making it the second largest insect order with 126 families and 46 superfamilies, and one of the most widespread and widely recognizable insect orders in the world.

<span class="mw-page-title-main">Pupa</span> Life stage of some insects undergoing transformation

A pupa is the life stage of some insects undergoing transformation between immature and mature stages. Insects that go through a pupal stage are holometabolous: they go through four distinct stages in their life cycle, the stages thereof being egg, larva, pupa, and imago. The processes of entering and completing the pupal stage are controlled by the insect's hormones, especially juvenile hormone, prothoracicotropic hormone, and ecdysone. The act of becoming a pupa is called pupation, and the act of emerging from the pupal case is called eclosion or emergence.

<span class="mw-page-title-main">Common blue</span> Species of butterfly

The common blue butterfly or European common blue is a butterfly in the family Lycaenidae and subfamily Polyommatinae. The butterfly is found throughout the Palearctic and has been introduced to North America. Butterflies in the Polyommatinae are collectively called blues, from the coloring of the wings. Common blue males usually have wings that are blue above with a black-brown border and a white fringe. The females are usually brown above with a blue dusting and orange spots.

<span class="mw-page-title-main">Lycaenidae</span> Family of butterflies

Lycaenidae is the second-largest family of butterflies, with over 6,000 species worldwide, whose members are also called gossamer-winged butterflies. They constitute about 30% of the known butterfly species.

<span class="mw-page-title-main">Riodinidae</span> Butterfly family containing the metalmarks

Riodinidae is the family of metalmark butterflies. The common name "metalmarks" refers to the small, metallic-looking spots commonly found on their wings. The 1,532 species are placed in 146 genera. Although mostly Neotropical in distribution, the family is also represented both in the Nearctic, Palearctic, Australasian (Dicallaneura), Afrotropic, and Indomalayan realms.

<i>Paratrechina</i> Genus of ants

Paratrechina is one of seven ant genera in the Prenolepis genus-group from the subfamily Formicinae. Six species are included in Paratrechina; one of which, the longhorn crazy ant, is a widespread, pantropical pest.

<span class="mw-page-title-main">Myrmecophily</span> Positive interspecies associations between ants and other organisms

Myrmecophily is the term applied to positive interspecies associations between ants and a variety of other organisms, such as plants, other arthropods, and fungi. Myrmecophily refers to mutualistic associations with ants, though in its more general use, the term may also refer to commensal or even parasitic interactions.

<i>Loxura atymnus</i> Species of butterfly

Loxura atymnus, the yamfly, is a species of lycaenid or blue butterfly found in Asia.

<i>Phengaris rebeli</i> Species of butterfly

Phengaris rebeli, common name mountain Alcon blue, is a species of butterfly in the family Lycaenidae. It was first found and described in Styria, Austria, on Mount Hochschwab around 1700. Although it was initially classified as a subspecies of P. alcon, a European researcher, Lucien A. Berger, designated it as a separate species in 1946. Genetic similarities between P. rebeli and P. alcon have led many researchers to argue that the two are the same species and differences are due to intraspecific variation.

<span class="mw-page-title-main">External morphology of Lepidoptera</span> External features of butterflies and moths

The external morphology of Lepidoptera is the physiological structure of the bodies of insects belonging to the order Lepidoptera, also known as butterflies and moths. Lepidoptera are distinguished from other orders by the presence of scales on the external parts of the body and appendages, especially the wings. Butterflies and moths vary in size from microlepidoptera only a few millimetres long, to a wingspan of many inches such as the Atlas moth. Comprising over 160,000 described species, the Lepidoptera possess variations of the basic body structure which has evolved to gain advantages in adaptation and distribution.

<i>Ochrogaster lunifer</i> Species of moth

Ochrogaster lunifer, the bag-shelter moth or processionary caterpillar, is a member of the family Notodontidae. The species was first described by Gottlieb August Wilhelm Herrich-Schäffer in 1855. Both the larval and adult forms have hairs that cause irritation of the skin (urticaria). The adult moth has a woolly appearance and its wings can grow to be about 5.5 cm across. The larvae feed on Grevillea striata at night and reside in brown silken bag nest during the day.

Aloeides margaretae, the Marguarite's copper, is a butterfly of the family Lycaenidae. It is found in South Africa, where it is known from the western coast and along the south coast in the Western Cape.

<span class="mw-page-title-main">Singing caterpillars</span>

Singing caterpillars is a term coined by Philip James DeVries, referring to the fact that the larvae of ant-associated butterfly species of the families Riodinidae and Lycaenidae produce substrate borne sounds that attract ants. The study of these symbiotic associations was pioneered by Phil DeVries in Central America, and Naomi Pierce in Australia. Recently, Lucas Kaminski and collaborators are expanding the studies of riodinid-ant symbioses in Brazil.

Bucolus fourneti is a native Australian, small, hairy coccinellid beetle approximately 2.1-4.5 mm in diameter. It was described by Étienne Mulsant in 1850

<i>Niphanda fusca</i> Species of butterfly

Niphanda fusca is a parasitic butterfly primarily found in East Asian countries such as Japan and Korea. It is a "cuckoo-type" parasite of the ant Camponotus japonicus. It utilizes chemical mimicry to trick the host worker ants into adopting it while it is a third-instar caterpillar. From there, it is fed mouth-to-mouth by the worker ants as though it were one of their own young.

Nola analis is a moth of the family Nolidae first described by Wileman and West in 1928. It is found in India, Sri Lanka and Hong Kong.

<i>Adelotypa annulifera</i> Species of butterfly

Adelotypa annulifera is a species of riodinid butterfly found in South America. It was first described by Frederick DuCane Godman in 1903.

<i>Callophrys nelsoni</i> Species of Lepidoptera

Callophrys nelsoni, or Nelson's hairstreak, is a species of butterfly belonging to the genus Callophrys, wingspan of approximately 1 to 1.5 inches. Like many members of the Lycaenidae family, this butterfly has distinctive rod-like antennae. Callophrys nelsoni are gernually found throughout the west coast of the United States. Although they can be found along the very bottom of Canada's British Columbia and down to Baja California Norte.

References

  1. Stichel, H. (1924-01-01). "Beiträge zur Kenntnis der Riodinidenfauna Südamerikas. (Lep.) II. Kolumbien". Berliner Entomologische Zeitschrift. 1924 (2): 137–151. doi:10.1002/mmnd.192419240203. ISSN   1860-1324.
  2. 1 2 3 4 5 6 7 8 9 10 Horvitz, Carol C.; Turnbull, Christine; Harvey, Donald J. (1 July 1987). "Biology of Immature Eurybia elvina (Lepidoptera: Riodinidae), a Myrmecophilous Metalmark Butterfly". Annals of the Entomological Society of America. 80 (4): 513–519. doi:10.1093/aesa/80.4.513. ISSN   0013-8746.
  3. Horvitz, Carol C.; Turnbull, Christine; Harvey, Donald J. (1987-07-01). "Biology of Immature Eurybia elvina (Lepidoptera: Riodinidae), a Myrmecophilous Metalmark Butterfly". Annals of the Entomological Society of America. 80 (4): 513–519. doi:10.1093/aesa/80.4.513. ISSN   0013-8746.
  4. DeVries, P. J. (1991). Ecological and evolutionary patterns in myrmecophilous riodinid butterflies.
  5. Maron, John L.; Horvitz, Carol C.; Williams, Jennifer L. (1 March 2010). "Using experiments, demography and population models to estimate interaction strength based on transient and asymptotic dynamics". Journal of Ecology. 98 (2): 290–301. doi:10.1111/j.1365-2745.2009.01617.x. ISSN   1365-2745.
  6. Bauder, Julia Anne-Sophie; Handschuh, Stephan; Metscher, Brian Douglas; Krenn, Harald Wolfgang (2013-10-01). "Functional morphology of the feeding apparatus and evolution of proboscis length in metalmark butterflies (Lepidoptera: Riodinidae)". Biological Journal of the Linnean Society. 110 (2): 291–304. doi:10.1111/bij.12134. ISSN   0024-4066. PMC   4021108 . PMID   24839308.
  7. DeVries, P. J., Chacon, I. A., & Murray, D. (1992). Toward a better understanding of host use and biodiversity in riodinid butterflies(Lepidoptera). Journal of Research on the Lepidoptera, 31(1), 103-126.
  8. Schemske, Douglas W.; Horvitz, Carol C. (1984). "Variation among Floral Visitors in Pollination Ability: A Precondition for Mutualism Specialization". Science. 225 (4661): 519–521. doi:10.1126/science.225.4661.519. JSTOR   1694004.
  9. Travassos, M. A., Devries, D. J., and Pierce, N. E. 2008. A novel organ and mechanism for larval sound production in butterfly caterpillars: Eurybia elvina (Lepidoptera: Riodinidae).Trop. Lepidoptera Res. 18(1): 20–23.