Federico Capasso

Last updated

Federico Capasso
Born1949
Rome, Italy
NationalityItalian, American (since 1992)
Alma mater University of Rome
Known for Quantum cascade laser; band gap engineering; repulsive Casimir forces; Wavefront engineering using plasmonics
Awards IEEE David Sarnoff Award (1993)
Newcomb Cleveland Prize (1993)
John Price Wetherill Medal (1997)
Rank Prize for Optoelectronics (1998)
R. W. Wood Prize (2001)
Duddell Medal and Prize (2002)
Arthur L- Schawlow Prize (2004)
Edison Medal (2004)
King Faisal Prize (2004)
Tomassoni award (2004)
Berthold Leibinger Zukunftspreis (2010)
SPIE Gold Medal (2013)
Balzan Prize (2016)
Enrico Fermi Prize (2018)
Matteucci Medal (2019)
Frederic Ives Medal (2019)
Scientific career
Fields Applied physics
Institutions Fondazione Ugo Bordoni
Bell Laboratories
Harvard University

Federico Capasso (born 1949) is an applied physicist and is one of the inventors of the quantum cascade laser during his work at Bell Laboratories. [1] He is currently on the faculty of Harvard University.

Contents

Biography

Federico Capasso received the Doctor of Physics degree, summa cum laude, from the University of Rome, Italy, in 1973 and after doing research in fiber optics at Fondazione Ugo Bordoni in Rome, joined Bell Labs in 1976.

In 1984, he was made a distinguished member of technical staff and in 1997 a Bell Labs Fellow. In addition to his research activity, Capasso has held several management positions at Bell Labs, including head of the quantum phenomena and device research department and the semiconductor physics research department (1987–2000) and vice president of physical research (2000–2002). He joined Harvard on 1 January 2003.

He and his collaborators made many wide-ranging contributions to semiconductor devices, pioneering the design technique known as band-structure engineering. He applied it to novel low noise quantum well avalanche photodiodes, heterojunction transistors, memory devices and lasers. He and his collaborators invented and demonstrated the quantum cascade laser (QCL). [2] Unlike conventional semiconductor lasers, known as diode lasers, which rely on the band gap of the semiconductor to emit light, the wavelength of QCLs is determined by the energy separation between conduction band quantized states in quantum wells. In 1971 researchers postulated that such an emission process could be used for laser amplification in a superlattice. [3] The QCL wavelength can be tailored across a wide range from the mid-infrared to the far infrared by changing the quantum well thickness. The mature technology of the QCL is now finding commercial applications. [4] QCLs have become the most widely used sources of mid-infrared radiation for chemical sensing and spectroscopy and are commercially available. They operate at temperatures in excess of 100°C and emit up to several watts of power in continuous wave.

Capasso's current research in quantum electronics deals with very high power continuous-wave QCLs, the design of new light sources based on giant optical nonlinearities in quantum wells such as widely tunable sources of terahertz radiation based on difference frequency generation and with plasmonics. He and his group at Harvard have demonstrated a new class of optical antennas and plasmonic collimators that they have used to design the near-field and far-field of semiconductor lasers, achieving ultrahigh intensity deep subwavelength size laser spots, laser beams with greatly reduced divergence and multibeam lasers. His group showed that suitably designed plasmonic interfaces consisting of optically thin arrays of optical nano-antennas lead to a powerful generalization of the centuries-old laws of reflection and refraction. They form the basis of "flat optics" based on metasurfaces.

Federico Capasso has made major contributions to the study of quantum electrodynamical forces known as Casimir forces. He used the Casimir effect (the attraction between metal surfaces in vacuum due to its zero point energy) to control the motion of MicroElectroMechanical Systems (MEMS). He demonstrated novel devices (Casimir actuators and oscillators), setting limits to the scaling of MEMs technology and with his collaborators Jeremy Munday and Adrian Parsegian was the first to measure a repulsive Casimir force. [5]

Awards and honors

His honors include membership in the National Academy of Sciences, the American Academy of Arts and Sciences, the European Academy of Sciences and honorary membership in the Franklin Institute. He was also elected a member of the National Academy of Engineering (1995) for contributions to solid-state electronics and optoelectronics through semiconductor 'bandgap engineering.'

In 2004, he received the Chisesi-Tomassoni award for his pioneering work on the quantum-cascade laser. In 2005 he received, jointly with Nobel Laureate Frank Wilczek (MIT) and Anton Zeilinger (University of Vienna), the King Faisal International Prize for Science for his research on quantum cascade lasers. The citation called him "one of the most creative and influential physicists in the world." [6]

On behalf of the American Physical Society, he was awarded the 2004 Arthur L. Schawlow Prize in Laser Science, endowed by the NEC Corporation, for "seminal contributions to the invention and demonstration of the quantum cascade laser and the elucidation of its physics, which bridges quantum electronics, solid-state physics, and materials science."

SPIE, the international society of optics and photonics, selected Capasso to receive the 2013 SPIE Gold Medal, [7] the highest honor the society bestows.

In addition, the IEEE (Institute of Electrical and Electronics Engineers), the world's largest technical professional organization, named Capasso the recipient of the 2004 IEEE Edison Medal with the following citation, "For a career of highly creative and influential contributions to heterostructure devices and materials."

He is also recipient of the John Price Wetherill Medal of the Franklin Institute, the R. W. Wood Prize of the Optical Society of America, the IEEE Lasers and Electro-Optics Society W. Streifer Award for Scientific Achievement, the Materials Research Society Medal, the Rank Prize in Optoelectronics (UK), the Duddell Medal and Prize of the Institute of Physics (UK), The Willis Lamb Medal for Laser Science and Quantum Optics, the Newcomb Cleveland Prize of the American Association for the Advancement of Science, the 1995 Moet Hennessy-Louis Vuitton "Leonardo da Vinci" Prize (France), the Welker Memorial Medal (Germany), the New York Academy of Sciences Award, the IEEE David Sarnoff Award in Electronics, and the Goff Smith prize of the University of Michigan. In 2010 he received the Berthold Leibinger Zukunftspreis for research in applied laser technology and the Julius Springer Prize in Applied Physics. In 2011 he received the Jan Czochralski Medal of the European Materials Research society for his lifetime achievements in Materials Science.

In 2016 he was awarded the Balzan Prize for Applied Photonics "For his pioneering work in the quantum design of new materials with specific electronic and optical features, which led to the realization of a fundamentally new class of laser, the Quantum Cascade Laser; for his major contributions in plasmonics and metamaterials at the forefront of photonics science and technology". He received the Matteucci Medal in 2019 from the Italian National Academy of Sciences for his invention of the quantum cascade laser. [8]

He is a Fellow of the American Physical Society, the Institute of Physics (UK), the Optical Society of America, the American Association for the Advancement of Science, IEEE and SPIE. He holds honorary doctorates from Lund University, Sweden, the Diderot University (Paris VII), France, the University of Bologna, Italy and the University of Torvergata (Roma II), Italy.

In 2021 Capasso received the Frederic Ives Medal/Jarus W. Quinn Prize from the Optical Society of America for seminal and wide-ranging contributions to optical physics, quantum electronics and nanophotonics. [9]

Bibliography

Related Research Articles

<span class="mw-page-title-main">Eli Yablonovitch</span> American physicist

Eli Yablonovitch is an American physicist and engineer who, along with Sajeev John, founded the field of photonic crystals in 1987. He and his team were the first to create a 3-dimensional structure that exhibited a full photonic bandgap, which has been named Yablonovite. In addition to pioneering photonic crystals, he was the first to recognize that a strained quantum-well laser has a significantly reduced threshold current compared to its unstrained counterpart. This is now employed in the majority of semiconductor lasers fabricated throughout the world. His seminal paper reporting inhibited spontaneous emission in photonic crystals is among the most highly cited papers in physics and engineering.

<span class="mw-page-title-main">Gérard Mourou</span> French physicist (born 1944)

Gérard Albert Mourou is a French scientist and pioneer in the field of electrical engineering and lasers. He was awarded a Nobel Prize in Physics in 2018, along with Donna Strickland, for the invention of chirped pulse amplification, a technique later used to create ultrashort-pulse, very high-intensity (petawatt) laser pulses.

Quantum-cascade lasers (QCLs) are semiconductor lasers that emit in the mid- to far-infrared portion of the electromagnetic spectrum and were first demonstrated by Jérôme Faist, Federico Capasso, Deborah Sivco, Carlo Sirtori, Albert Hutchinson, and Alfred Cho at Bell Laboratories in 1994.

Claire F. Gmachl is the Eugene Higgins Professor of Electrical Engineering at Princeton University. She is best known for her work in the development of quantum cascade lasers.

<span class="mw-page-title-main">Vladimir Shalaev</span> American optical physicist

Vladimir (Vlad) M. Shalaev is a Distinguished Professor of Electrical and Computer Engineering and Scientific Director for Nanophotonics at Birck Nanotechnology Center, Purdue University.

<span class="mw-page-title-main">Wyant College of Optical Sciences</span> Division of the University of Arizona

The University of Arizona College of Optical Sciences, considered the largest institute for optics education in the United States, is dedicated to research and education in optics with an emphasis on optical engineering. The college offers more than 90 courses in optical sciences, and a Bachelor of Science degree in Optical Sciences and Engineering, Masters and Doctoral degree programs in Optical Sciences, as well as a dual master's degree in Optical Sciences and Business Administration. The college also offers comprehensive distance learning courses leading to a Professional Graduate Certificate or a master's degree and markets non-credit short courses on DVD to optics professionals.

<span class="mw-page-title-main">Robert L. Byer</span> American physicist

Robert Louis Byer is a physicist. He was president of the Optical Society of America in 1994 and of the American Physical Society in 2012.

The IEEE Photonics Society, formerly the IEEE Lasers and Electro-Optics Society (LEOS), is a society of the Institute of Electrical and Electronics Engineers (IEEE), focused on the scientific and engineering knowledge about the field of quantum electronics. In the hierarchy of IEEE, the Photonics Society is one of the close to 40 technical societies organized under the IEEE Technical Activities Board.

<span class="mw-page-title-main">Anthony M. Johnson</span> American physicist, ultrafast optics (born 1954)

Anthony Michael Johnson is an American experimental physicist, a professor of physics, and a professor of computer science and electrical engineering at the University of Maryland, Baltimore County (UMBC). He is the director of the Center for Advanced Studies in Photonics Research (CASPR), also situated on campus at UMBC. Since his election to the 2002 term as president of the Optical Society, formerly the Optical Society of America, Johnson has the distinction of being the first and only African-American president to date. Johnson's research interests include the ultrafast photophysics and nonlinear optical properties of bulk, nanostructured, and quantum well semiconductor structures, ultrashort pulse propagation in fibers and high-speed lightwave systems. His research has helped to better understand processes that occur in ultrafast time frames of 1 quadrillionth of a second. Ultrashort pulses of light have been used to address technical and logistical challenges in medicine, telecommunications, homeland security, and have many other applications that enhance contemporary life.

<span class="mw-page-title-main">Amnon Yariv</span> Israeli-American professor

Amnon Yariv is an Israeli-American professor of applied physics and electrical engineering at Caltech, known for innovations in optoelectronics. Yariv obtained his B.S., M.S. and PhD. in electrical engineering from University of California, Berkeley in 1954, 1956 and 1958, respectively.

Andrea Alù is an Italian American scientist and engineer, currently Einstein Professor of Physics at The City University of New York Graduate Center. He is known for his contributions to the fields of optics, photonics, plasmonics, and acoustics, most notably in the context of metamaterials and metasurfaces. He has co-authored over 650 journal papers and 35 book chapters, and he holds 11 U.S. patents.

<span class="mw-page-title-main">Luigi Lugiato</span> Italian physicist (1944-)

Luigi Lugiato is an Italian physicist and professor emeritus at University of Insubria (Varese/Como). He is best known for his work in theoretical nonlinear and quantum optics, and especially for the Lugiato–Lefever equation (LLE,). He has authored more than 340 scientific articles, and the textbook Nonlinear Dynamical Systems. His work has been theoretical but has stimulated a large number of important experiments in the world. It is also characterized by the fact of combining the classical and quantum aspects of optical systems.

<span class="mw-page-title-main">Ursula Keller</span> Swiss physicist

Ursula Keller is a Swiss physicist. She has been a physics professor at the ETH Zurich, Switzerland since 2003 with a speciality in ultra-fast laser technology, an inventor and the winner of the 2018 European Inventor Award by the European Patent Office.

<span class="mw-page-title-main">Anatoly Zayats</span>

Anatoly V. Zayats is a British experimental physicist of Ukrainian origin known for his work in nanophotonics, plasmonics, metamaterials and applied nanotechnology. He is currently a Chair in Experimental Physics and the head of the Photonics & Nanotechnology Group at King's College London. He is a co-director of the London Centre for Nanotechnology and the London Institute for Advanced Light Technologies

Manijeh Razeghi is an Iranian-American scientist in the fields of semiconductors and optoelectronic devices. She is a pioneer in modern epitaxial techniques for semiconductors such as low pressure metalorganic chemical vapor deposition (MOCVD), vapor phase epitaxy (VPE), molecular beam epitaxy (MBE), GasMBE, and MOMBE. These techniques have enabled the development of semiconductor devices and quantum structures with higher composition consistency and reliability, leading to major advancement in InP and GaAs based quantum photonics and electronic devices, which were at the core of the late 20th century optical fiber telecommunications and early information technology.

Govind P. Agrawal is an Indian American physicist and a fellow of Optica, Life Fellow of the IEEE, and Distinguished Fellow of the Optical Society of India. He is the recipient of James C. Wyant Professorship of Optics at the Institute of Optics and a professor of physics at the University of Rochester. He is also a Distinguished scientist at the Laboratory for Laser Energetics (LLE) in the University of Rochester. Agrawal has authored and co-authored several highly cited books in the fields of non-linear fiber optics, optical communications, and semiconductor lasers.

<span class="mw-page-title-main">Alexandra Boltasseva</span> American physicist and engineer

Alexandra Boltasseva is Ron And Dotty Garvin Tonjes Distinguished Professor of electrical and computer engineering at Purdue University, and editor-in-chief for The Optical Society's Optical Materials Express journal. Her research focuses on plasmonic metamaterials, manmade composites of metals that use surface plasmons to achieve optical properties not seen in nature.

<span class="mw-page-title-main">Alpes Lasers</span> Swiss engineering company

Alpes Lasers S.A. is a Swiss engineering company and manufacturer of Infrared lasers and electrical drivers based in St-Blaise, Canton of Neuchâtel. The company was the first to commercialize the quantum-cascade laser (QCL) for scientific, industrial and medical use. The company has also developed QCLs for defensive countermeasure applications for the United States Air Force.

Peter J. Delfyett Jr is an American engineer and Pegasus Professor and Trustee Chair Professor of Optics, ECE & Physics at the University of Central Florida College of Optics and Photonics.

<span class="mw-page-title-main">Herbert Winful</span> Ghanaian-American engineering professor (born 1952)

Herbert Graves Winful is a Ghanaian-American engineering professor, whose honours include in 2020 the Quantum Electronics Award. He is the Joseph E. and Anne P. Rowe Professor of Electrical Engineering, Arthur F. Thurnau Professor of Electrical Engineering and Computer Science, and a Professor of Physics at the University of Michigan.

References

  1. "Federico Capasso". IEEE Global History Network. IEEE. Retrieved 25 July 2011.
  2. Faist, Jerome; Capasso, Federico; Sivco, Deborah L.; Sirtori, Carlo; Hutchinson, Albert L.; Cho, Alfred Y. (22 April 1994). "Quantum Cascade Laser". Science. 264 (5158): 553–556. doi:10.1126/science.264.5158.553. ISSN   0036-8075.
  3. Kazarinov, RF, R.F; Suris, RA (1971). "Possible amplification of electromagnetic waves in a semiconductor with a superlattice". Fiz. Tekh. Poluprovodn. 5: 797–800.
  4. Donnelly (2010). "Video interview: Federico Capasso on the quantum cascade laser". SPIE Newsroom. doi:10.1117/2.3201004.02.
  5. "Much ado about nothing". The Economist.
  6. "Winners 2005 – Science". King Faisal Foundation . Retrieved 24 November 2011.
  7. "Award listing" (PDF). spie.org. Retrieved 7 February 2021.
  8. "Medaglia Matteucci". Accademia Nazionale delle Scienze. Retrieved 22 October 2019.
  9. "Frederic Ives Medal / Jarus W. Quinn Prize". OSA.