Flexagon

Last updated

A hexaflexagon, shown with the same face in two configurations Hexahexaflexagon - two sides - 01.jpg
A hexaflexagon, shown with the same face in two configurations

In geometry, flexagons are flat models, usually constructed by folding strips of paper, that can be flexed or folded in certain ways to reveal faces besides the two that were originally on the back and front.

Contents

Flexagons are usually square or rectangular (tetraflexagons) or hexagonal (hexaflexagons). A prefix can be added to the name to indicate the number of faces that the model can display, including the two faces (back and front) that are visible before flexing. For example, a hexaflexagon with a total of six faces is called a hexahexaflexagon.

In hexaflexagon theory (that is, concerning flexagons with six sides), flexagons are usually defined in terms of pats. [1] [2]

Two flexagons are equivalent if one can be transformed to the other by a series of pinches and rotations. Flexagon equivalence is an equivalence relation. [1]

History

Discovery and introduction of the hexaflexagon

The discovery of the first flexagon, a trihexaflexagon, is credited to the British mathematician Arthur H. Stone, while a student at Princeton University in the United States in 1939. His new American paper would not fit in his English binder so he cut off the ends of the paper and began folding them into different shapes. [3] One of these formed a trihexaflexagon. Stone's colleagues Bryant Tuckerman, Richard Feynman, and John Tukey became interested in the idea and formed the Princeton Flexagon Committee. Tuckerman worked out a topological method, called the Tuckerman traverse, for revealing all the faces of a flexagon. [4] Tuckerman traverses are shown as a diagram that maps each face of the flexagon to each other face. In doing so, he realized that each face does not always appear in the same state.

Flexagons were introduced to the general public by Martin Gardner in the December 1956 issue of Scientific American in an article so well-received that it launched Gardner's "Mathematical Games" column which then ran in that magazine for the next twenty-five years. [3] [5] In 1974, the magician Doug Henning included a construct-your-own hexaflexagon with the original cast recording of his Broadway show The Magic Show .

Attempted commercial development

In 1955, Russell Rogers and Leonard D'Andrea of Homestead Park, Pennsylvania applied for a patent, and in 1959 they were granted U.S. Patent number 2,883,195 for the hexahexaflexagon, under the title "Changeable Amusement Devices and the Like."

Their patent imagined possible applications of the device "as a toy, as an advertising display device, or as an educational geometric device." [6] A few such novelties were produced by the Herbick & Held Printing Company, the printing company in Pittsburgh where Rogers worked, but the device, marketed as the "Hexmo", failed to catch on.

Varieties

Tetraflexagons

Tritetraflexagon

A tritetraflexagon can be folded from a strip of paper as shown. Tritetraflexagon-net.PNG
A tritetraflexagon can be folded from a strip of paper as shown.
This figure has two faces visible, built of squares marked with As and Bs. The face of Cs is hidden inside the flexagon. Tritetraflexagon-flexing.PNG
This figure has two faces visible, built of squares marked with As and Bs. The face of Cs is hidden inside the flexagon.

The tritetraflexagon is the simplest tetraflexagon (flexagon with square sides). The "tri" in the name means it has three faces, two of which are visible at any given time if the flexagon is pressed flat. The construction of the tritetraflexagon is similar to the mechanism used in the traditional Jacob's Ladder children's toy, in Rubik's Magic and in the magic wallet trick or the Himber wallet.

The tritetraflexagon has two dead ends, where you cannot flex forward. To get to another face you must either flex backwards or flip the flexagon over.

Tritetraflexagon traverse Tritetraflexagon traverse.svg
Tritetraflexagon traverse

Hexatetraflexagon

A more complicated cyclic hexatetraflexagon requires no gluing. A cyclic hexatetraflexagon does not have any "dead ends", but the person making it can keep folding it until they reach the starting position. If the sides are colored in the process, the states can be seen more clearly.

Hexatetraflexagon traverse Hexatetraflexagon traverse.svg
Hexatetraflexagon traverse

Contrary to the tritetraflexagon, the hexatetraflexagon has no dead ends, and does not ever need to be flexed backwards.

Hexaflexagons

Hexaflexagons come in great variety, distinguished by the number of faces that can be achieved by flexing the assembled figure. (Note that the word hexaflexagons [with no prefixes] can sometimes refer to an ordinary hexahexaflexagon, with six sides instead of other numbers.)

Trihexaflexagon

This trihexaflexagon template shows 3 colors of 9 triangles, printed on one side, and folded to be colored on both sides. The two yellow triangles on the ends will end up taped together. The red and blue arcs are seen as full circles on the inside of one side or the other when folded. Trihexaflexagon example.png
This trihexaflexagon template shows 3 colors of 9 triangles, printed on one side, and folded to be colored on both sides. The two yellow triangles on the ends will end up taped together. The red and blue arcs are seen as full circles on the inside of one side or the other when folded.

A hexaflexagon with three faces is the simplest of the hexaflexagons to make and to manage, and is made from a single strip of paper, divided into nine equilateral triangles. (Some patterns provide ten triangles, two of which are glued together in the final assembly.)

To assemble, the strip is folded every third triangle, connecting back to itself after three inversions in the manner of the international recycling symbol. This makes a Möbius strip whose single edge forms a trefoil knot.

Hexahexaflexagon

This hexaflexagon has six faces. It is made up of nineteen triangles folded from a strip of paper.

Hexahexaflexagon template.svg
Figures 1-6 show the construction of a hexaflexagon made out of cardboard triangles on a backing made from a strip of cloth. It has been decorated in six colours; orange, blue, and red in figure 1 correspond to 1, 2, and 3 in the diagram above. The opposite side, figure 2, is decorated with purple, gray, and yellow. Note the different patterns used for the colors on the two sides. Figure 3 shows the first fold, and figure 4 the result of the first nine folds, which form a spiral. Figures 5-6 show the final folding of the spiral to make a hexagon; in 5, two red faces have been hidden by a valley fold, and in 6, two red faces on the bottom side have been hidden by a mountain fold. After figure 6, the final loose triangle is folded over and attached to the other end of the original strip so that one side is all blue, and the other all orange. Photos 7 and 8 show the process of everting the hexaflexagon to show the formerly hidden red triangles. By further manipulations, all six colors can be exposed. Hexaflexagon-construction-and-use.jpg
Figures 1-6 show the construction of a hexaflexagon made out of cardboard triangles on a backing made from a strip of cloth. It has been decorated in six colours; orange, blue, and red in figure 1 correspond to 1, 2, and 3 in the diagram above. The opposite side, figure 2, is decorated with purple, gray, and yellow. Note the different patterns used for the colors on the two sides. Figure 3 shows the first fold, and figure 4 the result of the first nine folds, which form a spiral. Figures 5-6 show the final folding of the spiral to make a hexagon; in 5, two red faces have been hidden by a valley fold, and in 6, two red faces on the bottom side have been hidden by a mountain fold. After figure 6, the final loose triangle is folded over and attached to the other end of the original strip so that one side is all blue, and the other all orange. Photos 7 and 8 show the process of everting the hexaflexagon to show the formerly hidden red triangles. By further manipulations, all six colors can be exposed.

Once folded, faces 1, 2, and 3 are easier to find than faces 4, 5, and 6.

An easy way to expose all six faces is using the Tuckerman traverse, named after Bryant Tuckerman, one of the first to investigate the properties of hexaflexagons. The Tuckerman traverse involves the repeated flexing by pinching one corner and flex from exactly the same corner every time. If the corner refuses to open, move to an adjacent corner and keep flexing. This procedure brings you to a 12-face cycle. During this procedure, however, 1, 2, and 3 show up three times as frequently as 4, 5, and 6. The cycle proceeds as follows:

1 → 3 → 6 → 1 → 3 → 2 → 4 → 3 → 2 → 1 → 5 → 2

And then back to 1 again.

Each color/face can also be exposed in more than one way. In figure 6, for example, each blue triangle has at the center its corner decorated with a wedge, but it is also possible, for example, to make the ones decorated with Y's come to the center. There are 18 such possible configurations for triangles with different colors, and they can be seen by flexing the hexahexaflexagon in all possible ways in theory, but only 15 can be flexed by the ordinary hexahexaflexagon. The 3 extra configurations are impossible due to the arrangement of the 4, 5, and 6 tiles at the back flap. (The 60-degree angles in the rhombi formed by the adjacent 4, 5, or 6 tiles will only appear on the sides and never will appear at the center because it would require one to cut the strip, which is topologically forbidden.)

Hexahexaflexagons can be constructed from different shaped nets of eighteen equilateral triangles. One hexahexaflexagon, constructed from an irregular paper strip, is almost identical to the one shown above, except that all 18 configurations can be flexed on this version.

Other hexaflexagons

While the most commonly seen hexaflexagons have either three or six faces, variations exist with any number of faces. Straight strips produce hexaflexagons with a multiple of three number of faces. Other numbers are obtained from nonstraight strips, that are just straight strips with some joints folded, eliminating some faces. Many strips can be folded in different ways, producing different hexaflexagons, with different folding maps.

Higher order flexagons

Right octaflexagon and right dodecaflexagon

In these more recently discovered flexagons, each square or equilateral triangular face of a conventional flexagon is further divided into two right triangles, permitting additional flexing modes. [7] The division of the square faces of tetraflexagons into right isosceles triangles yields the octaflexagons, [8] and the division of the triangular faces of the hexaflexagons into 30-60-90 right triangles yields the dodecaflexagons. [9]

Pentaflexagon and right decaflexagon

In its flat state, the pentaflexagon looks much like the Chrysler logo: a regular pentagon divided from the center into five isosceles triangles, with angles 72–54–54. Because of its fivefold symmetry, the pentaflexagon cannot be folded in half. However, a complex series of flexes results in its transformation from displaying sides one and two on the front and back, to displaying its previously hidden sides three and four. [10]

By further dividing the 72-54-54 triangles of the pentaflexagon into 36-54-90 right triangles produces one variation of the 10-sided decaflexagon. [11]

Generalized isosceles n-flexagon

The pentaflexagon is one of an infinite sequence of flexagons based on dividing a regular n-gon into n isosceles triangles. Other flexagons include the heptaflexagon, [12] the isosceles octaflexagon, [13] the enneaflexagon, [14] and others.

Nonplanar pentaflexagon and nonplanar heptaflexagon

Harold V. McIntosh also describes "nonplanar" flexagons (i.e., ones which cannot be flexed so they lie flat); ones folded from pentagons called pentaflexagons, [15] and from heptagons called heptaflexagons. [16] These should be distinguished from the "ordinary" pentaflexagons and heptaflexagons described above, which are made out of isosceles triangles, and they can be made to lie flat.

Flexagons are also a popular book structure used by artist's book creators such as Julie Chen (Life Cycle) and Edward H. Hutchins (Album and Voces de México). Instructions for making tetra-tetra-flexagon and cross-flexagons are included in Making Handmade Books: 100+ Bindings, Structures and Forms by Alisa Golden. [17]

A high-order hexaflexagon was used as a plot element in Piers Anthony's novel 0X , in which a flex was analogous to the travel between alternate universes. [18]

Vi Hart, a well-known recreational mathematician and public educator, gained attention for her video on hexaflexagons.

See also

Related Research Articles

<span class="mw-page-title-main">Antiprism</span> Polyhedron with parallel bases connected by triangles

In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An.

<span class="mw-page-title-main">Martin Gardner</span> American mathematics and science writer (1914–2010)

Martin Gardner was an American popular mathematics and popular science writer with interests also encompassing magic, scientific skepticism, micromagic, philosophy, religion, and literature – especially the writings of Lewis Carroll, L. Frank Baum, and G. K. Chesterton. He was a leading authority on Lewis Carroll; The Annotated Alice, which incorporated the text of Carroll's two Alice books, was his most successful work and sold over a million copies. He had a lifelong interest in magic and illusion and in 1999, MAGIC magazine named him as one of the "100 Most Influential Magicians of the Twentieth Century". He was considered the doyen of American puzzlers. He was a prolific and versatile author, publishing more than 100 books.

<span class="mw-page-title-main">Möbius strip</span> Non-orientable surface with one edge

In mathematics, a Möbius strip, Möbius band, or Möbius loop is a surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Benedict Listing and August Ferdinand Möbius in 1858, but it had already appeared in Roman mosaics from the third century CE. The Möbius strip is a non-orientable surface, meaning that within it one cannot consistently distinguish clockwise from counterclockwise turns. Every non-orientable surface contains a Möbius strip.

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Equilateral triangle</span> Shape with three equal sides

In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.

<span class="mw-page-title-main">Modular origami</span>

Modular origami or unit origami is a two-stage paper folding technique in which several, or sometimes many, sheets of paper are first folded into individual modules or units and then assembled into an integrated flat shape or three-dimensional structure, usually by inserting flaps into pockets created by the folding process. These insertions create tension or friction that holds the model together.

<span class="mw-page-title-main">Isosceles triangle</span> Triangle with at least two sides congruent

In geometry, an isosceles triangle is a triangle that has two sides of equal length. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case. Examples of isosceles triangles include the isosceles right triangle, the golden triangle, and the faces of bipyramids and certain Catalan solids.

<span class="mw-page-title-main">Tessellation</span> Tiling of a plane in mathematics

A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries.

A Heronian tetrahedron is a tetrahedron whose edge lengths, face areas and volume are all integers. The faces must therefore all be Heronian triangles . Every Heronian tetrahedron can be arranged in Euclidean space so that its vertex coordinates are also integers.

<span class="mw-page-title-main">Polyhex (mathematics)</span> Polyform with a regular hexagon as the base form

In recreational mathematics, a polyhex is a polyform with a regular hexagon as the base form, constructed by joining together 1 or more hexagons. Specific forms are named by their number of hexagons: monohex, dihex, trihex, tetrahex, etc. They were named by David Klarner who investigated them.

<span class="mw-page-title-main">Square pyramid</span> Pyramid with a square base

In geometry, a square pyramid is a pyramid with a square base, having a total of five faces. If the apex of the pyramid is directly above the center of the square, it is a right square pyramid with four isosceles triangles; otherwise, it is an oblique square pyramid. When all of the pyramid's edges are equal in length, its triangles are all equilateral, and it is called an equilateral square pyramid.

<span class="mw-page-title-main">Elongated triangular pyramid</span> 7th Johnson solid (7 faces)

In geometry, the elongated triangular pyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating a tetrahedron by attaching a triangular prism to its base. Like any elongated pyramid, the resulting solid is topologically self-dual.

<span class="mw-page-title-main">Elongated square bipyramid</span> Cube capped by two square pyramids

In geometry, the elongated square bipyramid is the polyhedron constructed by attaching two equilateral square pyramids onto a cube's faces that are opposite each other. It can also be seen as 4 lunes linked together with squares to squares and triangles to triangles. It is also been named the pencil cube or 12-faced pencil cube due to its shape.

<span class="mw-page-title-main">Spidron</span>

In geometry, a spidron is a continuous flat geometric figure composed entirely of triangles, where, for every pair of joining triangles, each has a leg of the other as one of its legs, and neither has any point inside the interior of the other. A deformed spidron is a three-dimensional figure sharing the other properties of a specific spidron, as if that spidron were drawn on paper, cut out in a single piece, and folded along a number of legs.

<span class="mw-page-title-main">Disphenoid</span> Tetrahedron whose faces are all congruent

In geometry, a disphenoid is a tetrahedron whose four faces are congruent acute-angled triangles. It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths. Other names for the same shape are isotetrahedron, sphenoid, bisphenoid, isosceles tetrahedron, equifacial tetrahedron, almost regular tetrahedron, and tetramonohedron.

<span class="mw-page-title-main">Rep-tile</span> Shape subdivided into copies of itself

In the geometry of tessellations, a rep-tile or reptile is a shape that can be dissected into smaller copies of the same shape. The term was coined as a pun on animal reptiles by recreational mathematician Solomon W. Golomb and popularized by Martin Gardner in his "Mathematical Games" column in the May 1963 issue of Scientific American. In 2012 a generalization of rep-tiles called self-tiling tile sets was introduced by Lee Sallows in Mathematics Magazine.

Yutaka Nishiyama is a Japanese mathematician and professor at the Osaka University of Economics, where he teaches mathematics and information. He is known as the "boomerang professor". He has written nine books about the mathematics in daily life. The most recent one, The mystery of five in nature, investigates, amongst other things, why many flowers have five petals.

<span class="mw-page-title-main">Kaleidocycle</span>

A kaleidocycle or flextangle is a flexible polyhedron connecting six tetrahedra on opposite edges into a cycle. If the faces of the disphenoids are equilateral triangles, it can be constructed from a stretched triangular tiling net with four triangles in one direction and an even number in the other direction.

<span class="mw-page-title-main">Icosahedron</span> Polyhedron with 20 faces

In geometry, an icosahedron is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty', and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" or "icosahedrons".

Royal Vale Heath was a wealthy New York stockbroker and writer who became widely known as a magician and puzzle enthusiast. His magic tricks were often based on mathematics and he introduced the term "mathemagic" to describe them in a 1933 book titled Mathemagic. He was a frequent contributor to Scripta Mathematica, Hugard's Magic Monthly, and The Jinx.

References

  1. 1 2 Oakley, C. O.; Wisner, R. J. (March 1957). "Flexagons". The American Mathematical Monthly. 64 (3). Mathematical Association of America: 143–154. doi:10.2307/2310544. JSTOR   2310544.
  2. Anderson, Thomas; McLean, T. Bruce; Pajoohesh, Homeira; Smith, Chasen (January 2010). "The combinatorics of all regular flexagons". European Journal of Combinatorics. 31 (1): 72–80. doi: 10.1016/j.ejc.2009.01.005 .
  3. 1 2 Gardner, Martin (December 1956). "Flexagons". Scientific American . Vol. 195, no. 6. pp. 162–168. doi:10.1038/scientificamerican1256-162. JSTOR   24941843. OCLC   4657622161.
  4. Gardner, Martin (1988). Hexaflexagons and Other Mathematical Diversions: The First Scientific American Book of Puzzles and Games. University of Chicago Press. ISBN   0-226-28254-6.
  5. Mulcahy, Colm (October 21, 2014). "The Top 10 Martin Gardner Scientific American Articles". Scientific American.
  6. Rogers, Russell E.; Andrea, Leonard D. L. (April 21, 1959). "Changeable amusement devices and the like" (PDF). Freepatentsonline.com. U.S. Patent 2883195. Archived (PDF) from the original on June 14, 2011. Retrieved January 13, 2011.
  7. Schwartz, Ann (2005). "Flexagon Discovery: The Shape-Shifting 12-Gon". Eighthsquare.com. Retrieved October 26, 2012.
  8. Sherman, Scott (2007). "Octaflexagon". Loki3.com. Retrieved October 26, 2012.
  9. Sherman, Scott (2007). "Dodecaflexagon". Loki3.com. Retrieved October 26, 2012.
  10. Sherman, Scott (2007). "Pentaflexagon". Loki3.com. Retrieved October 26, 2012.
  11. Sherman, Scott (2007). "Decaflexagon". Loki3.com. Retrieved October 26, 2012.
  12. Sherman, Scott (2007). "Heptaflexagon". Loki3.com. Retrieved October 26, 2012.
  13. Sherman, Scott (2007). "Octaflexagon: Isosceles Octaflexagon". Loki3.com. Retrieved October 26, 2012.
  14. Sherman, Scott (2007). "Enneaflexagon: Isosceles Enneaflexagon". Loki3.com. Retrieved October 26, 2012.
  15. McIntosh, Harold V. (August 24, 2000). "Pentagonal Flexagons". Cinvestav.mx. Universidad Autónoma de Puebla. Retrieved October 26, 2012.
  16. McIntosh, Harold V. (March 11, 2000). "Heptagonal Flexagons". Cinvestav.mx. Universidad Autónoma de Puebla. Retrieved October 26, 2012.
  17. Golden, Alisa J. (2011). Making Handmade Books: 100+ Bindings, Structures & Forms . Lark Crafts. pp.  130, 132–133. ISBN   978-1-60059-587-5.
  18. Collings, Michael R. (1984). Piers Anthony. Starmont Reader's Guide #20. Borgo Press. pp. 47–48. ISBN   0-89370-058-4.

Bibliography