In music, function (also referred to as harmonic function [1] ) is a term used to denote the relationship of a chord [2] or a scale degree [3] to a tonal centre. Two main theories of tonal functions exist today:
Both theories find part of their inspiration in the theories of Jean-Philippe Rameau, starting with his Traité d'harmonie of 1722. [9] Even if the concept of harmonic function was not so named before 1893, it could be shown to exist, explicitly or implicitly, in many theories of harmony before that date. Early usages of the term in music (not necessarily in the sense implied here, or only vaguely so) include those by Fétis (Traité complet de la théorie et de la pratique de l'harmonie, 1844), Durutte (Esthétique musicale, 1855), Loquin (Notions élémentaires d'harmonie moderne, 1862), etc. [10]
The idea of function has been extended further and is sometimes used to translate Antique concepts, such as dynamis in Ancient Greece, or qualitas in medieval Latin.
The concept of harmonic function originates in theories about just intonation. It was realized that three perfect major triads, distant from each other by a perfect fifth, produced the seven degrees of the major scale in one of the possible forms of just intonation: for instance, the triads F–A–C, C–E–G and G–B–D (subdominant, tonic, and dominant respectively) produce the seven notes of the major scale. These three triads were soon considered the most important chords of the major tonality, with the tonic in the center, the dominant above and the subdominant under.
This symmetric construction may have been one of the reasons why the fourth degree of the scale, and the chord built on it, were named "subdominant", i.e. the "dominant under [the tonic]". It also is one of the origins of the dualist theories which described not only the scale in just intonation as a symmetric construction, but also the minor tonality as an inversion of the major one. Dualist theories are documented from the 16th century onwards.
The term 'functional harmony' derives from Hugo Riemann and, more particularly, from his Harmony Simplified. [11] Riemann's direct inspiration was Moritz Hauptmann's dialectic description of tonality. [12] Riemann described three abstract functions: the tonic, the dominant (its upper fifth), and the subdominant (its lower fifth). [13] He also considered the minor scale to be the inversion of the major scale, so that the dominant was the fifth above the tonic in major, but below the tonic in minor; the subdominant, similarly, was the fifth below the tonic (or the fourth above) in major, and the reverse in minor.
Despite the complexity of his theory, Riemann's ideas had huge impact, especially where German influence was strong. A good example in this regard are the textbooks by Hermann Grabner. [14] More recent German theorists have abandoned the most complex aspect of Riemann's theory, the dualist conception of major and minor, and consider that the dominant is the fifth degree above the tonic, the subdominant the fourth degree, both in minor and in major. [15]
In Diether de la Motte's version of the theory, [16] the three tonal functions are denoted by the letters T, D and S, for Tonic, Dominant and Subdominant respectively; the letters are uppercase for functions in major (T, D, S), lowercase for functions in minor (t, d, s). Each of these functions can in principle be fulfilled by three chords: not only the main chord corresponding to the function, but also the chords a third lower or a third higher, as indicated by additional letters. An additional letter P or p indicates that the function is fulfilled by the relative (German Parallel) of its main triad: for instance Tp for the minor relative of the major tonic (e.g., A minor for C major), tP for the major relative of the minor tonic (e.g. E♭ major for c minor), etc. The other triad a third apart from the main one may be denoted by an additional G or g for Gegenparallelklang or Gegenklang ("counterrelative"), for instance tG for the major counterrelative of the minor tonic (e.g. A♭ major for C minor).
The relation between triads a third apart resides in the fact that they differ from each other by one note only, the two other notes being common notes. In addition, within the diatonic scale, triads a third apart necessarily are of opposite mode. In the simplified theory where the functions in major and minor are on the same degrees of the scale, the possible functions of triads on degrees I to VII of the scale could be summarized as in the table below [17] (degrees II in minor and VII in major, diminished fifths in the diatonic scale, are considered as chords without fundamental). Chords on III and VI may exert the same function as those a third above or a third below, but one of these two is less frequent than the other, as indicated by parentheses in the table.
Degree | I | II | III | IV | V | VI | VII | |
---|---|---|---|---|---|---|---|---|
Function | in major | T | Sp | Dp / (Tg) | S<l | D | Tp / (Sg) | |
in minor | t | tP / (dG) | s | d | sP / tG | dP |
In each case, the mode of the chord is denoted by the final letter: for instance, Sp for II in major indicates that II is the minor relative (p) of the major subdominant (S). The major VIth degree in minor is the only one where both functions, sP (major relative of the minor subdominant) and tG (major counterparallel of the minor tonic), are equally plausible. Other signs (not discussed here) are used to denote altered chords, chords without fundamental, applied dominants, etc. Degree VII in harmonic sequence (e.g. I–IV–VII–III–VI–II–V–I) may at times be denoted by its roman numeral; in major, the sequence would then be denoted by T–S–VII–Dp–Tp–Sp–D–T.
As summarized by Vincent d'Indy (1903), [18] who shared the conception of Riemann:
The Viennese theory on the other hand, the "Theory of the degrees" (Stufentheorie), represented by Simon Sechter, Heinrich Schenker and Arnold Schoenberg among others, considers that each degree has its own function and refers to the tonal center through the cycle of fifths; it stresses harmonic progressions above chord quality. [19] In music theory as it is commonly taught in the US, there are six or seven different functions, depending on whether degree VII is considered to possess an independent function.
Stufentheorie stresses the individuality and independence of the seven harmonic degrees. Moreover, unlike Funktionstheorie, where the primary harmonic model is the I–IV–V–I progression, Stufentheorie leans heavily on the cycle of descending fifths I–IV–VII–III–VI–II–V–I".
— Eytan Agmon [20]
The table below compares the English and German terminologies for the major scale. In English, the names of the scale degrees are also the names of their function, and they remain the same in major and in minor.
Name of scale degree | Roman numeral | Function in German | English translation | German abbreviation |
---|---|---|---|---|
Tonic | I | Tonika | Tonic | T |
Supertonic | ii | Subdominantparallele | Relative of the subdominant | Sp |
Mediant | iii | Dominantparallele or Tonika-Gegenparallele | Relative of the dominant or Counterrelative of the tonic | Dp/Tg |
Subdominant | IV | Subdominante | Subdominant (also Pre-dominant) | S |
Dominant | V | Dominante | Dominant | D |
Submediant | vi | Tonikaparallele | Relative of the tonic | Tp |
Leading (note) | vii° | verkürzter Dominantseptakkord | [Incomplete dominant seventh chord] | diagonally slashed D7 (Đ7) |
Note that ii, iii, and vi are lowercase: this indicates that they are minor chords; vii° indicates that this chord is a diminished triad.
Some may at first be put off by the overt theorizing apparent in German harmony, wishing perhaps that a choice be made once and for all between Riemann's Funktionstheorie and the older Stufentheorie, or possibly believing that so-called linear theories have settled all earlier disputes. Yet this ongoing conflict between antithetical theories, with its attendant uncertainties and complexities, has special merits. In particular, whereas an English-speaking student may falsely believe that he or she is learning harmony "as it really is," the German student encounters what are obviously theoretical constructs and must deal with them accordingly.
— Robert O. Gjerdingen [13]
Reviewing usage of harmonic theory in American publications, William Caplin writes: [21]
Most North American textbooks identify individual harmonies in terms of the scale degrees of their roots. ... Many theorists understand, however, that the Roman numerals do not necessarily define seven fully distinct harmonies, and they instead propose a classification of harmonies into three main groups of harmonic functions: tonic, dominant, and pre-dominant.
- Tonic harmonies include the I and VI chords in their various positions.
- Dominant harmonies include the V and VII chords in their various positions. III can function as a dominant substitute in some contexts (as in the progression V–III–VI).
- Pre-dominant harmonies include a wide variety of chords: IV, II, ♭II, secondary (applied) dominants of the dominant (such as V7/V), and the various "augmented-sixth" chords. ... The modern North American adaptation of the function theory retains Riemann’s category of tonic and dominant functions but usually reconceptualizes his "subdominant" function into a more all-embracing pre-dominant function.
Caplin further explains that there are two main types of pre-dominant harmonies, "those built above the fourth degree of the scale ( ) in the bass voice and those derived from the dominant of the dominant (V/V)" (p. 10). The first type includes IV, II6 or ♭II6, but also other positions of these, such as IV6 or ♭II. The second type groups harmonies which feature the raised-fourth scale degree (♯ ) functioning as the leading tone of the dominant: VII7/V, V6V, or the three varieties of augmented sixth chords.
The major scale is one of the most commonly used musical scales, especially in Western music. It is one of the diatonic scales. Like many musical scales, it is made up of seven notes: the eighth duplicates the first at double its frequency so that it is called a higher octave of the same note.
In music, the tonic is the first scale degree of the diatonic scale and the tonal center or final resolution tone that is commonly used in the final cadence in tonal classical music, popular music, and traditional music. In the movable do solfège system, the tonic note is sung as do. More generally, the tonic is the note upon which all other notes of a piece are hierarchically referenced. Scales are named after their tonics: for instance, the tonic of the C major scale is the note C.
In music theory, a leading tone is a note or pitch which resolves or "leads" to a note one semitone higher or lower, being a lower and upper leading tone, respectively. Typically, the leading tone refers to the seventh scale degree of a major scale, a major seventh above the tonic. In the movable do solfège system, the leading tone is sung as si.
In a musical composition, a chord progression or harmonic progression is a succession of chords. Chord progressions are the foundation of harmony in Western musical tradition from the common practice era of Classical music to the 21st century. Chord progressions are the foundation of popular music styles, traditional music, as well as genres such as blues and jazz. In these genres, chord progressions are the defining feature on which melody and rhythm are built.
In music, the subdominant is the fourth tonal degree of the diatonic scale. It is so called because it is the same distance below the tonic as the dominant is above the tonic – in other words, the tonic is the dominant of the subdominant. It also happens to be the note one step below the dominant. In the movable do solfège system, the subdominant note is sung as fa.
In music, modulation is the change from one tonality to another. This may or may not be accompanied by a change in key signature. Modulations articulate or create the structure or form of many pieces, as well as add interest. Treatment of a chord as the tonic for less than a phrase is considered tonicization.
Modulation is the essential part of the art. Without it there is little music, for a piece derives its true beauty not from the large number of fixed modes which it embraces but rather from the subtle fabric of its modulation.
A secondary chord is an analytical label for a specific harmonic device that is prevalent in the tonal idiom of Western music beginning in the common practice period: the use of diatonic functions for tonicization.
Tonality is the arrangement of pitches and/or chords of a musical work in a hierarchy of perceived relations, stabilities, attractions, and directionality. In this hierarchy the single pitch or triad with the greatest stability is called the tonic. The root of the tonic triad forms the name given to the key, so in the key of C major the tone C can be both the tonic of the scale and the root of the tonic triad. The tonic can be a different tone in the same scale, when the work is said to be in one of the modes of the scale.
In music, the submediant is the sixth degree of a diatonic scale. The submediant is named thus because it is halfway between the tonic and the subdominant or because its position below the tonic is symmetrical to that of the mediant above.
In music, the subtonic is the degree of a musical scale which is a whole step below the tonic note. In a major key, it is a lowered, or flattened, seventh scale degree. It appears as the seventh scale degree in the natural minor and descending melodic minor scales but not in the major scale. In major keys, the subtonic sometimes appears in borrowed chords. In the movable do solfège system, the subtonic note is sung as te.
Chromaticism is a compositional technique interspersing the primary diatonic pitches and chords with other pitches of the chromatic scale. In simple terms, within each octave, diatonic music uses only seven different notes, rather than the twelve available on a standard piano keyboard. Music is chromatic when it uses more than just these seven notes.
In music theory, a dominant seventh chord, or major minor seventh chord, is a seventh chord composed of a root, major third, perfect fifth, and minor seventh; thus it is a major triad together with a minor seventh. It is often denoted by the letter name of the chord root and a superscript "7". In most cases, dominant seventh chord are built on the fifth degree of the major scale. An example is the dominant seventh chord built on G, written as G7, having pitches G–B–D–F:
The original Tristan chord is heard in the opening phrase of Richard Wagner's opera Tristan und Isolde as part of the leitmotif relating to Tristan. It is made up of the notes F, B, D♯, and G♯:
The diminished seventh chord is a four-note chord composed of a root note, together with a minor third, a diminished fifth, and a diminished seventh above the root:. For example, the diminished seventh chord built on B, commonly written as Bo7, has pitches B-D-F-A♭:
In music theory, the harmonic major scale is a musical scale found in some music from the common practice era and now used occasionally, most often in jazz. It corresponds to the Raga Sarasangi in Indian Carnatic music, or Raag Nat Bhairav in Hindustani music.
The Andalusian cadence is a term adopted from flamenco music for a chord progression comprising four chords descending stepwise – a iv–III–II–I progression with respect to the Phrygian mode or i–VII–VI–V progression with respect to the Aeolian mode (minor). It is otherwise known as the minor descending tetrachord. Traceable back to the Renaissance, its effective sonorities made it one of the most popular progressions in classical music.
In music, a primary triad is one of the three triads, or three-note chords built from major or minor thirds, most important in tonal and diatonic music, as opposed to an auxiliary triad or secondary triad.
In music theory, Roman numeral analysis is a type of harmonic analysis in which chords are represented by Roman numerals, which encode the chord's degree and harmonic function within a given musical key.
In music, the dominant is the fifth scale degree of the diatonic scale. It is called the dominant because it is second in importance to the first scale degree, the tonic. In the movable do solfège system, the dominant note is sung as "So(l)".
Parallel and counter parallel chords are terms derived from the German to denote what is more often called in English the "relative", and possibly the "counter relative" chords. In Hugo Riemann's theory, and in German theory more generally, these chords share the function of the chord to which they link: subdominant parallel, dominant parallel, and tonic parallel. Riemann defines the relation in terms of the movement of one single note:
The substitution of the major sixth for the perfect fifth above in the major triad and below in the minor triad results in the parallel of a given triad. In C major thence arises an apparent A minor triad, D minor triad (Sp), and E minor triad (Dp).
Translated (with some adaptation) in Jean-Jacques Nattiez, Music and Discourse. Toward a Semiology of Music, C. Abbate transl., Princeton, Princeton University Press, 1990, p. 224. Nattiez (or his translator, the quotation is not in the French edition) removed d'Indy's dualist idea according to which the chords are built from a major and a minor thirds, the major chord from bottom to top, the minor chord the other way around.
- il n'y a qu' un seul accord, l'Accord parfait, seul consonnant, parce que, seul il donne la sensation de repos ou d'équilibre;
- l'Accord se manifeste sous deux aspects différents, l'aspect majeur et l'aspect mineur, suivant qu'il est engendré du grave à l'aigu ou de l'aigu au grave.
- l'Accord est susceptible de revêtir trois fonctions tonales différentes, suivant qu'il est Tonique, Dominante ou Sous-dominante.