This article needs additional citations for verification .(June 2017) |
Designer | General Electric |
---|---|
Bits | 24-bit |
Introduced | 1964 |
Design | CISC |
Type | Register-Memory Memory-Memory |
Encoding | Fixed |
Branching | Condition indicators Compare and branch |
Registers | |
Accumulator 6 index registers (in memory) | |
General-purpose | none |
Floating point | none |
The GE-400 series were time-sharing Information Systems computers by General Electric introduced in 1964 and shipped until 1968.
The GE-400 series (Compatibles/400) came in models: 415, 425, 435 (1964), [1] 455 and 465. [2] GE-400 systems had a word length of 24 bits which could contain binary data, four six-bit BCD characters, three eight-bit (ASCII) characters or four signed decimal digits. GE-400 systems had magnetic-core memory with a cycle time of 2.7 microseconds (435) or 5.1 microseconds (425). The 425 and 435 had memory of 32k (32,768) words and 64k (65,536) words, respectively. The 455 and 465 had memory of 32k (32,768) words and 64k (65,536) words, respectively. As today's computers use bytes to designate memory size, the memory sizes of the GE-400 would be 98,304 bytes and 196,608 bytes. The systems supported up to eight channels for input/output.
The GE-425 GE-435 were batch computers with no communication capabilities. The GE-455 and GE-465 were the timesharing versions. These timesharing computers had a Datanet-30 front end to provide the communications capability at 110 baud originally (10 CPS) and later, with a later hardware upgrade, to handle 300 baud (30 CPS). The GE-465 was the most common version and supported up to 50 users simultaneously.
The GE 412 (1962) [3] was an incompatible computer system with a 20-bit word length intended for process control applications. [4]
GE-400 systems featured a "variable length, relocatable accumulator" [5] which could be set programmatically to a length of one to four words and relocated to overlay any four adjacent locations in memory (modulo four). "The accumulator can be moved to the data to be processed, rather than moving the data."
The 400 series was succeeded by the incompatible 36-bit GE-600 series.
The Honeywell 6000 series computers were rebadged versions of General Electric's 600-series mainframes manufactured by Honeywell International, Inc. from 1970 to 1989. Honeywell acquired the line when it purchased GE's computer division in 1970 and continued to develop them under a variety of names for many years. In 1989, Honeywell sold its computer division to the French company Groupe Bull who continued to market compatible machines.
The GE-600 series is a family of 36-bit mainframe computers originating in the 1960s, built by General Electric (GE). When GE left the mainframe business the line was sold to Honeywell, which built similar systems into the 1990s as the division moved to Groupe Bull and then NEC.
The UNIVAC 1100/2200 series is a series of compatible 36-bit computer systems, beginning with the UNIVAC 1107 in 1962, initially made by Sperry Rand. The series continues to be supported today by Unisys Corporation as the ClearPath Dorado Series. The solid-state 1107 model number was in the same sequence as the earlier vacuum-tube computers, but the early computers were not compatible with their solid-state successors.
The IBM 700/7000 series is a series of large-scale (mainframe) computer systems that were made by IBM through the 1950s and early 1960s. The series includes several different, incompatible processor architectures. The 700s use vacuum-tube logic and were made obsolete by the introduction of the transistorized 7000s. The 7000s, in turn, were eventually replaced with System/360, which was announced in 1964. However the 360/65, the first 360 powerful enough to replace 7000s, did not become available until November 1965. Early problems with OS/360 and the high cost of converting software kept many 7000s in service for years afterward.
The PDP-6, short for Programmed Data Processor model 6, is a computer developed by Digital Equipment Corporation (DEC) during 1963 and first delivered in the summer of 1964. It was an expansion of DEC's existing 18-bit systems to use a 36-bit data word, which was at that time a common word size for large machines like IBM mainframes. The system was constructed using the same germanium transistor-based System Module layout as DEC's earlier machines, like the PDP-1 and PDP-4.
Byte addressing in hardware architectures supports accessing individual bytes. Computers with byte addressing are sometimes called byte machines, in contrast to word-addressable architectures, word machines, that access data by word.
Scientific Data Systems (SDS), was an American computer company founded in September 1961 by Max Palevsky, Arthur Rock and Robert Beck, veterans of Packard Bell Corporation and Bendix, along with eleven other computer scientists. SDS was the first to employ silicon transistors, and was an early adopter of integrated circuits in computer design. The company concentrated on larger scientific workload focused machines and sold many machines to NASA during the Space Race. Most machines were both fast and relatively low-priced. The company was sold to Xerox in 1969, but dwindling sales due to the oil crisis of 1973–74 caused Xerox to close the division in 1975 at a loss of hundreds of millions of dollars. During the Xerox years the company was officially Xerox Data Systems (XDS), whose machines were the Xerox 500 series.
The UNIVAC 418 was a transistorized computer made by Sperry Univac. It had 18-bit words and used magnetic-core memory. The name came from its 4-microsecond memory cycle time and 18-bit word. The assembly language for this class of computers was TRIM III and ART418.
Modcomp, Inc., originally Modular Computer Systems, was a small minicomputer vendor that specialized in real-time applications. They were founded in 1970 in Fort Lauderdale, Florida. In the 1970s and 1980s, they produced a line of 16- and 32-bit mini-computers. Through the 1980s, Modcomp lost market share as more powerful micro-computers became popular, and Digital Equipment Corporation's VAX and Alpha systems continued to grow. The company successfully survives today as a systems integrator operating as CSPi Technology Solutions headquartered in Deerfield Beach, Florida.
The NCR 315 Data Processing System, released in January 1962 by NCR, is a second-generation computer. All printed circuit boards use resistor–transistor logic (RTL) to create the various logic elements. It uses 12-bit slab memory structure using magnetic-core memory. The instructions can use a memory slab as either two 6-bit alphanumeric characters or as three 4-bit BCD digits. Basic memory is 5000 "slabs" of handmade core memory, which is expandable to a maximum of 40,000 slabs in four refrigerator-size cabinets. The main processor includes three cabinets and a console section that houses the power supply, keyboard, output writer, and a panel with lights that indicate the current status of the program counter, registers, arithmetic accumulator, and system errors. Input/Output is by direct parallel connections to each type of peripheral through a two-cable bundle with 1-inch-thick cables. Some devices like magnetic tape and the CRAM are daisy-chained to allow multiple drives to be connected.
The CDC 160 series was a series of minicomputers built by Control Data Corporation. The CDC 160 and CDC 160-A were 12-bit minicomputers built from 1960 to 1965; the CDC 160G was a 13-bit minicomputer, with an extended version of the CDC 160-A instruction set, and a compatibility mode in which it did not use the 13th bit. The 160 was designed by Seymour Cray - reportedly over a long three-day weekend. It fit into the desk where its operator sat.
Varian Data Machines was a division of Varian Associates which sold minicomputers. It entered the market in 1967 through acquisition of Decision Control Inc. (DCI) in Newport Beach, California. It met stiff competition and was bought by Sperry Corporation in June 1977 who merged it into their Sperry UNIVAC division as the Sperry UNIVAC Minicomputer Operation.
The RCA Spectra 70 is a line of electronic data processing (EDP) equipment that was manufactured by the Radio Corporation of America’s computer division beginning in April 1965. The Spectra 70 line included several CPU models, various configurations of core memory, mass-storage devices, terminal equipment, and a variety of specialized interface equipment.
The SDS Sigma series is a series of third generation computers that were introduced by Scientific Data Systems of the United States in 1966. The first machines in the series are the 16-bit Sigma 2 and the 32-bit Sigma 7; the Sigma 7 was the first 32-bit computer released by SDS. At the time, the only competition for the Sigma 7 was the IBM 360.
This timeline of binary prefixes lists events in the history of the evolution, development, and use of units of measure that are germane to the definition of the binary prefixes by the International Electrotechnical Commission (IEC) in 1998, used primarily with units of information such as the bit and the byte.
In computer architecture, 16-bit integers, memory addresses, or other data units are those that are 16 bits wide. Also, 16-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size. 16-bit microcomputers are microcomputers that use 16-bit microprocessors.
The AN/AYK-14(V) is a family of computers for use in military weapons systems. It is a general-purpose 16-bit microprogrammed computer, intended for airborne vehicles and missions. Its modular design provides for common firmware and support software. It is still in use on Navy fleet aircraft including the F/A-18, and the AV-8B. The AN/AYK-14(V) family of systems is designed to meet MIL-E-5400 (airborne) requirements.
The IBM System/360 Model 50 is a member of the IBM System/360 family of computers. The Model 50 was announced in April 1964 with the other initial models of the family, and first shipped in August 1965 to the Bank of America.
Philco was one of the pioneers of transistorized computers, also known as second generation computers. After the company developed the surface barrier transistor, which was much faster than previous point-contact types, it was awarded contracts for military and government computers. Commercialized derivatives of some of these designs became successful business and scientific computers. The TRANSAC Model S-1000 was released as a scientific computer. The TRANSAC S-2000 mainframe computer system was first produced in 1958, and a family of compatible machines, with increasing performance, was released over the next several years.
The WD16 is a 16-bit microprocessor introduced by Western Digital in October 1976. It is based on the MCP-1600 chipset, a general-purpose design that was also used to implement the DEC LSI-11 low-end minicomputer and the Pascal MicroEngine processor. The three systems differed primarily in their microcode, giving each system a unique instruction set architecture (ISA).