GE-400 series

Last updated
GE 400
Designer General Electric
Bits24-bit
Introduced1964
Design CISC
TypeRegister-Memory
Memory-Memory
Encoding Fixed
Branching Condition indicators
Compare and branch
Registers
Accumulator
6 index registers (in memory)
General-purpose none
Floating point none

The GE-400 series were time-sharing Information Systems computers by General Electric introduced in 1964 and shipped until 1968.

Contents

System description

The GE-400 series (Compatibles/400) came in models: 415, 425, 435 (1964), [1] 455 and 465. [2] GE-400 systems had a word length of 24 bits which could contain binary data, four six-bit BCD characters, or four signed decimal digits. GE-400 systems could have up to 32,768 words (132K characters) of magnetic-core memory with a cycle time of 2.7 microseconds (435) or 5.1 microseconds (425). The systems supported up to eight channels for input/output.

The GE 412 (1962) [3] was an incompatible computer system with a 20-bit word length intended for process control applications. [4]

Unique features

GE-400 systems featured a "variable length, relocatable accumulator" [5] which could be set programmatically to a length of one to four words and relocated to overlay any four adjacent locations in memory (modulo four). "The accumulator can be moved to the data to be processed, rather than moving the data."

Successor systems

The 400 series was succeeded by the incompatible 36-bit GE-600 series.

See also

Related Research Articles

<span class="mw-page-title-main">Zilog Z80</span> 8-bit microprocessor

The Zilog Z80 is an 8-bit microprocessor designed by Zilog that played an important role in the evolution of early computing. Software-compatible with the Intel 8080, it offered a compelling alternative due to its better integration and increased performance. The Z80 boasted fourteen registers compared to the 8080's seven, along with additional instructions for bit manipulation, making it a more powerful chip.

The Honeywell 6000 series computers were rebadged versions of General Electric's 600-series mainframes manufactured by Honeywell International, Inc. from 1970 to 1989. Honeywell acquired the line when it purchased GE's computer division in 1970 and continued to develop them under a variety of names for many years. In 1989, Honeywell sold its computer division to the French company Groupe Bull who continued to market compatible machines.

The GE-600 series is a family of 36-bit mainframe computers originating in the 1960s, built by General Electric (GE). When GE left the mainframe business the line was sold to Honeywell, which built similar systems into the 1990s as the division moved to Groupe Bull and then NEC.

<span class="mw-page-title-main">GE-200 series</span> Small mainframe computer series (1960s)

The GE-200 series was a family of small mainframe computers of the 1960s, built by General Electric (GE). GE marketing called the line Compatibles/200 (GE-205/215/225/235). The GE-210 of 1960 was not compatible with the rest of the 200 series.

<span class="mw-page-title-main">General Comprehensive Operating System</span> Operating system from General Electric

General Comprehensive Operating System is a family of operating systems oriented toward the 36-bit GE-600 series and Honeywell 6000 series mainframe computers.

<span class="mw-page-title-main">UNIVAC 1100/2200 series</span> Family of mainframe computers

The UNIVAC 1100/2200 series is a series of compatible 36-bit computer systems, beginning with the UNIVAC 1107 in 1962, initially made by Sperry Rand. The series continues to be supported today by Unisys Corporation as the ClearPath Dorado Series. The solid-state 1107 model number was in the same sequence as the earlier vacuum-tube computers, but the early computers were not compatible with their solid-state successors.

<span class="mw-page-title-main">IBM 700/7000 series</span> Mainframe computer systems made by IBM through the 1950s and early 1960s

The IBM 700/7000 series is a series of large-scale (mainframe) computer systems that were made by IBM through the 1950s and early 1960s. The series includes several different, incompatible processor architectures. The 700s use vacuum-tube logic and were made obsolete by the introduction of the transistorized 7000s. The 7000s, in turn, were eventually replaced with System/360, which was announced in 1964. However the 360/65, the first 360 powerful enough to replace 7000s, did not become available until November 1965. Early problems with OS/360 and the high cost of converting software kept many 7000s in service for years afterward.

<span class="mw-page-title-main">History of computing hardware (1960s–present)</span>

The history of computing hardware starting at 1960 is marked by the conversion from vacuum tube to solid-state devices such as transistors and then integrated circuit (IC) chips. Around 1953 to 1959, discrete transistors started being considered sufficiently reliable and economical that they made further vacuum tube computers uncompetitive. Metal–oxide–semiconductor (MOS) large-scale integration (LSI) technology subsequently led to the development of semiconductor memory in the mid-to-late 1960s and then the microprocessor in the early 1970s. This led to primary computer memory moving away from magnetic-core memory devices to solid-state static and dynamic semiconductor memory, which greatly reduced the cost, size, and power consumption of computers. These advances led to the miniaturized personal computer (PC) in the 1970s, starting with home computers and desktop computers, followed by laptops and then mobile computers over the next several decades.

<span class="mw-page-title-main">Index register</span> CPU register used for modifying operand addresses

An index register in a computer's CPU is a processor register used for pointing to operand addresses during the run of a program. It is useful for stepping through strings and arrays. It can also be used for holding loop iterations and counters. In some architectures it is used for read/writing blocks of memory. Depending on the architecture it may be a dedicated index register or a general-purpose register. Some instruction sets allow more than one index register to be used; in that case additional instruction fields may specify which index registers to use.

<span class="mw-page-title-main">English Electric DEUCE</span>

The DEUCE was one of the earliest British commercially available computers, built by English Electric from 1955. It was the production version of the Pilot ACE, itself a cut-down version of Alan Turing's ACE.

Byte addressing in hardware architectures supports accessing individual bytes. Computers with byte addressing are sometimes called byte machines, in contrast to word-addressable architectures, word machines, that access data by word.

The Burroughs B2500 through Burroughs B4900 was a series of mainframe computers developed and manufactured by Burroughs Corporation in Pasadena, California, United States, from 1966 to 1991. They were aimed at the business world with an instruction set optimized for the COBOL programming language. They were also known as Burroughs Medium Systems, by contrast with the Burroughs Large Systems and Burroughs Small Systems.

<span class="mw-page-title-main">CDC 1604</span> Multipurpose Mainframe Computer & Peripherals

The CDC 1604 is a 48-bit computer designed and manufactured by Seymour Cray and his team at the Control Data Corporation (CDC). The 1604 is known as one of the first commercially successful transistorized computers. Legend has it that the 1604 designation was chosen by adding CDC's first street address to Cray's former project, the ERA-UNIVAC 1103.

<span class="mw-page-title-main">NCR 315</span>

The NCR 315 Data Processing System, released in January 1962 by NCR, is a second-generation computer. All printed circuit boards use resistor–transistor logic (RTL) to create the various logic elements. It uses 12-bit slab memory structure using magnetic-core memory. The instructions can use a memory slab as either two 6-bit alphanumeric characters or as three 4-bit BCD digits. Basic memory is 5000 "slabs" of handmade core memory, which is expandable to a maximum of 40,000 slabs in four refrigerator-size cabinets. The main processor includes three cabinets and a console section that houses the power supply, keyboard, output writer, and a panel with lights that indicate the current status of the program counter, registers, arithmetic accumulator, and system errors. Input/Output is by direct parallel connections to each type of peripheral through a two-cable bundle with 1-inch-thick cables. Some devices like magnetic tape and the CRAM are daisy-chained to allow multiple drives to be connected.

Varian Data Machines was a division of Varian Associates which sold minicomputers. It entered the market in 1967 through acquisition of Decision Control Inc. (DCI) in Newport Beach, California. It met stiff competition and was bought by Sperry Corporation in June 1977 who merged it into their Sperry UNIVAC division as the Sperry UNIVAC Minicomputer Operation.

The D-37C (D37C) is the computer component of the all-inertial NS-17 Missile Guidance Set (MGS) for accurately navigating to its target thousands of miles away. The NS-17 MGS was used in the Minuteman II (LGM-30F) ICBM. The MGS, originally designed and produced by the Autonetics Division of North American Aviation, could store multiple preprogrammed targets in its internal memory.

<span class="mw-page-title-main">RCA Spectra 70</span> Series of mainframe computers manufactured by RCA starting in 1965

The RCA Spectra 70 is a line of electronic data processing (EDP) equipment that was manufactured by the Radio Corporation of America’s computer division beginning in April 1965. The Spectra 70 line included several CPU models, various configurations of core memory, mass-storage devices, terminal equipment, and a variety of specialized interface equipment.

<span class="mw-page-title-main">General Instrument CP1600</span>

The CP1600 is a 16-bit microprocessor created in a partnership between General Instrument and Honeywell, introduced in February 1975. It is one of the first single-chip 16-bit processors. The overall design bears a strong resemblance to the PDP-11.

The DATANET-30, or DN-30 for short, was a computer manufactured by General Electric designed in 1961-1963 to be used as a communications computer. It was later used as a front-end processor for data communications. It became the first front end communications computer. The names on the patent were Don Birmingham, Bob McKenzie, Bud Pine, and Bill Hill.

Philco was one of the pioneers of transistorized computers. After the company developed the surface barrier transistor, which was much faster than previous point-contact types, it was awarded contracts for military and government computers. Commercialized derivatives of some of these designs became successful business and scientific computers. The TRANSAC Model S-1000 was released as a scientific computer. The TRANSAC S-2000 mainframe computer system was first produced in 1958, and a family of compatible machines, with increasing performance, was released over the next several years.

References

  1. Williams, R. H. (2014-05-23). British Commercial Computer Digest: Pergamon Computer Data Series. Elsevier. pp. 3/15–20. ISBN   9781483154527.
  2. "Compatibles/400 | 102686873 | Computer History Museum". www.computerhistory.org. 1964. Retrieved 2018-04-18.
  3. The European Computer Users Handbook. Computer Consultants. 1968. p. 15.
  4. General Electric Company. GE 412 Programming Manual (PDF).
  5. General Electric Company (1963). GE 425/435 Reference Manual (PDF). pp. 1–12: 1–13.