GE-400 series

Last updated
GE 400
Designer General Electric
Bits24-bit
Introduced1964
Design CISC
TypeRegister-Memory
Memory-Memory
Encoding Fixed
Branching Condition indicators
Compare and branch
Registers
Accumulator
6 index registers (in memory)
General purpose none
Floating point none

The GE-400 series were time-sharing Information Systems computers by General Electric introduced in 1964 and shipped until 1968.

Contents

System description

The GE-400 series (Compatibles/400) came in models: 415, 425, 435 (1964), [1] 455 and 465. [2] GE-400 systems had a word length of 24 bits which could contain binary data, four six-bit BCD characters, or four signed decimal digits. GE-400 systems could have up to 32,768 words (132K characters) of magnetic-core memory with a cycle time of 2.7 microseconds (435) or 5.1 microseconds (425). The systems supported up to eight channels for input/output.

The GE 412 (1962) [3] was an incompatible computer system with a 20-bit word length intended for process control applications. [4]

Unique features

GE-400 systems featured a "variable length, relocatable accumulator" [5] which could be set programmatically to a length of one to four words and relocated to overlay any four adjacent locations in memory (modulo four). "The accumulator can be moved to the data to be processed, rather than moving the data."

Successor systems

The 400 series was succeeded by the incompatible 36-bit GE-600 series.

See also

Related Research Articles

The Honeywell 6000 series computers were rebadged versions of General Electric's 600-series mainframes manufactured by Honeywell International, Inc. from 1970 to 1989. Honeywell acquired the line when it purchased GE's computer division in 1970 and continued to develop them under a variety of names for many years.

The GE-600 series was a family of 36-bit mainframe computers originating in the 1960s, built by General Electric (GE). When GE left the mainframe business the line was sold to Honeywell, which built similar systems into the 1990s as the division moved to Groupe Bull and then NEC.

<span class="mw-page-title-main">LINC</span> Laboratory Instrument Computer (1962)

The LINC is a 12-bit, 2048-word transistorized computer. The LINC is considered by some the first minicomputer and a forerunner to the personal computer. Originally named the "Linc", suggesting the project's origins at MIT's Lincoln Laboratory, it was renamed LINC after the project moved from the Lincoln Laboratory. The LINC was designed by Wesley A. Clark and Charles Molnar.

GE-200 series Small mainframe computer series (1960s)

The GE-200 series was a family of small mainframe computers of the 1960s, built by General Electric (GE). GE marketing called the line Compatibles/200 (GE-205/215/225/235). Oddly, the GE-210 of 1960 is not compatible with the rest of the 200 series.

IBM 650 Vacuum tube computer system

The IBM 650 Magnetic Drum Data-Processing Machine is an early digital computer produced by IBM in the mid-1950s. It was the first mass produced computer in the world. Almost 2,000 systems were produced, the last in 1962, and it was the first computer to make a meaningful profit. The first one was installed in late 1954 and it was the most-popular computer of the 1950s.

<span class="mw-page-title-main">UNIVAC 1100/2200 series</span> Family of mainframe computers

The UNIVAC 1100/2200 series is a series of compatible 36-bit computer systems, beginning with the UNIVAC 1107 in 1962, initially made by Sperry Rand. The series continues to be supported today by Unisys Corporation as the ClearPath Dorado Series. The solid-state 1107 model number was in the same sequence as the earlier vacuum-tube computers, but the early computers were not compatible with the solid-state successors.

IBM 700/7000 series Mainframe computer systems made by IBM through the 1950s and early 1960s

The IBM 700/7000 series is a series of large-scale (mainframe) computer systems that were made by IBM through the 1950s and early 1960s. The series includes several different, incompatible processor architectures. The 700s use vacuum-tube logic and were made obsolete by the introduction of the transistorized 7000s. The 7000s, in turn, were eventually replaced with System/360, which was announced in 1964. However the 360/65, the first 360 powerful enough to replace 7000s, did not become available until November 1965. Early problems with OS/360 and the high cost of converting software kept many 7000s in service for years afterward.

Index register CPU register used for modifying operand addresses

An index register in a computer's CPU is a processor register used for pointing to operand addresses during the run of a program. It is useful for stepping through strings and arrays. It can also be used for holding loop iterations and counters. In some architectures it is used for read/writing blocks of memory. Depending on the architecture it maybe a dedicated index register or a general-purpose register. Some instruction sets allow more than one index register to be used; in that case additional instruction fields may specify which index registers to use.

UNIVAC LARC Livermore Advanced Research Computer

The UNIVAC LARC, short for the Livermore Advanced Research Computer, is a mainframe computer designed to a requirement published by Edward Teller in order to run hydrodynamic simulations for nuclear weapon design. It was one of the earliest supercomputers.

<span class="mw-page-title-main">36-bit computing</span>

In computer architecture, 36-bit integers, memory addresses, or other data units are those that are 36 bits wide. Also, 36-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size. 36-bit computers were popular in the early mainframe computer era from the 1950s through the early 1970s.

The DEUCE was one of the earliest British commercially available computers, built by English Electric from 1955. It was the production version of the Pilot ACE, itself a cut-down version of Alan Turing's ACE.

Scientific Data Systems

Scientific Data Systems (SDS), was an American computer company founded in September 1961 by Max Palevsky and Robert Beck, veterans of Packard Bell Corporation and Bendix, along with eleven other computer scientists. SDS was an early adopter of integrated circuits in computer design and the first to employ silicon transistors. The company concentrated on larger scientific workload focused machines and sold many machines to NASA during the Space Race. Most machines were both fast and relatively low priced. The company was sold to Xerox in 1969, but dwindling sales due to the oil crisis of 1973–74 caused Xerox to close the division in 1975 at a loss of hundreds of millions of dollars. During the Xerox years the company was officially Xerox Data Systems (XDS), whose machines were the Xerox 500 series.

CDC 1604

The CDC 1604 was a 48-bit computer designed and manufactured by Seymour Cray and his team at the Control Data Corporation (CDC). The 1604 is known as one of the first commercially successful transistorized computers. Legend has it that the 1604 designation was chosen by adding CDC's first street address to Cray's former project, the ERA-UNIVAC 1103.

Varian Data Machines was a division of Varian Associates which sold minicomputers. It entered the market in 1967 through acquisition of Decision Control Inc. (DCI) in Newport Beach, California. It met stiff competition and was bought by Sperry Corporation in 1977.

D-17B Missile guidance computer

The D-17B (D17B) computer was used in the Minuteman I NS-1OQ missile guidance system. The complete guidance system contained a D-17B computer, the associated stable platform, and power supplies.

The D-37C (D37C) is the computer component of the all-inertial NS-17 Missile Guidance Set (MGS) for accurately navigating to its target thousands of miles away. The NS-17 MGS was used in the Minuteman II (LGM-30F) ICBM. The MGS, originally designed and produced by the Autonetics Division of North American Aviation, could store multiple preprogrammed targets in its internal memory.

RCA Spectra 70

The RCA Spectra 70 was a line of electronic data processing (EDP) equipment manufactured by the Radio Corporation of America’s computer division beginning in April 1965. The Spectra 70 line included several CPU models, various configurations of core memory, mass-storage devices, terminal equipment, and a variety of specialized interface equipment.

General Instrument CP1600

The CP1600 is a 16-bit microprocessor created in a partnership between General Instrument and Honeywell in 1975. It was among the first single-chip 16-bit processors; only the Texas Instruments TMS9900 is close in introduction date. The overall design bore a strong resemblance to the PDP-11.

The DATANET-30, or DN-30 for short, was a computer manufactured by General Electric designed in 1961-1963 to be used as a communications computer. It was later used as a front-end processor for data communications. It became the first front end communications computer. The names on the patent were Don Birmingham, Bob McKenzie, Bud Pine, and Bill Hill.

Philco was one of the pioneers of transistorized computers. After the company developed the surface barrier transistor, which was much faster than previous point-contact types, it was awarded contracts for military and government computers. Commercialized derivatives of some of these designs became successful business and scientific computers. The TRANSAC Model S-1000 was released as a scientific computer. The TRANSAC S-2000 mainframe computer system was first produced in 1958, and a family of compatible machines, with increasing performance, was released over the next several years.

References

  1. Williams, R. H. (2014-05-23). British Commercial Computer Digest: Pergamon Computer Data Series. Elsevier. pp. 3/15–20. ISBN   9781483154527.
  2. "Compatibles/400 | 102686873 | Computer History Museum". www.computerhistory.org. Retrieved 2018-04-18.
  3. The European Computer Users Handbook. Computer Consultants. 1968. p. 15.
  4. General Electric Company. GE 412 Programming Manual (PDF).
  5. General Electric Company (1963). GE 425/435 Reference Manual (PDF). pp. 1–12: 1–13.