General equation of heat transfer

Last updated

In fluid dynamics, the general equation of heat transfer is a nonlinear partial differential equation describing specific entropy production in a Newtonian fluid subject to thermal conduction and viscous forces: [1] [2]

Contents

where is the specific entropy, is the fluid's density, is the fluid's temperature, is the material derivative, is the thermal conductivity, is the dynamic viscosity, is the second Lamé parameter, is the flow velocity, is the del operator used to characterize the gradient and divergence, and is the Kronecker delta.

If the flow velocity is negligible, the general equation of heat transfer reduces to the standard heat equation. It may also be extended to rotating, stratified flows, such as those encountered in geophysical fluid dynamics. [3]

Derivation

Extension of the ideal fluid energy equation

For a viscous, Newtonian fluid, the governing equations for mass conservation and momentum conservation are the continuity equation and the Navier-Stokes equations:

where is the pressure and is the viscous stress tensor, with the components of the viscous stress tensor given by:

The energy of a unit volume of the fluid is the sum of the kinetic energy and the internal energy , where is the specific internal energy. In an ideal fluid, as described by the Euler equations, the conservation of energy is defined by the equation:

where is the specific enthalpy. However, for conservation of energy to hold in a viscous fluid subject to thermal conduction, the energy flux due to advection must be supplemented by a heat flux given by Fourier's law and a flux due to internal friction . Then the general equation for conservation of energy is:

Equation for entropy production

Note that the thermodynamic relations for the internal energy and enthalpy are given by:

We may also obtain an equation for the kinetic energy by taking the dot product of the Navier-Stokes equation with the flow velocity to yield:

The second term on the righthand side may be expanded to read:

With the aid of the thermodynamic relation for enthalpy and the last result, we may then put the kinetic energy equation into the form:

Now expanding the time derivative of the total energy, we have:

Then by expanding each of these terms, we find that:

And collecting terms, we are left with:

Now adding the divergence of the heat flux due to thermal conduction to each side, we have that:

However, we know that by the conservation of energy on the lefthand side is equal to zero, leaving us with:

The product of the viscous stress tensor and the velocity gradient can be expanded as:

Thus leading to the final form of the equation for specific entropy production:

In the case where thermal conduction and viscous forces are absent, the equation for entropy production collapses to - showing that ideal fluid flow is isentropic.

Application

This equation is derived in Section 49, at the opening of the chapter on "Thermal Conduction in Fluids" in the sixth volume of L.D. Landau and E.M. Lifshitz's Course of Theoretical Physics . [1] It might be used to measure the heat transfer and air flow in a domestic refrigerator, [4] to do a harmonic analysis of regenerators, [5] or to understand the physics of glaciers. [6]

See also

Related Research Articles

Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842-1850 (Stokes).

The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid. The governing equation is:

<span class="mw-page-title-main">Poisson's equation</span> Expression frequently encountered in mathematical physics, generalization of Laplaces equation.

Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson.

<span class="mw-page-title-main">Hooke's law</span> Physical law: force needed to deform a spring scales linearly with distance

In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

The primitive equations are a set of nonlinear partial differential equations that are used to approximate global atmospheric flow and are used in most atmospheric models. They consist of three main sets of balance equations:

  1. A continuity equation: Representing the conservation of mass.
  2. Conservation of momentum: Consisting of a form of the Navier–Stokes equations that describe hydrodynamical flow on the surface of a sphere under the assumption that vertical motion is much smaller than horizontal motion (hydrostasis) and that the fluid layer depth is small compared to the radius of the sphere
  3. A thermal energy equation: Relating the overall temperature of the system to heat sources and sinks

Aeroacoustics is a branch of acoustics that studies noise generation via either turbulent fluid motion or aerodynamic forces interacting with surfaces. Noise generation can also be associated with periodically varying flows. A notable example of this phenomenon is the Aeolian tones produced by wind blowing over fixed objects.

<span class="mw-page-title-main">Maxwell stress tensor</span>

The Maxwell stress tensor is a symmetric second-order tensor used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force law. When the situation becomes more complicated, this ordinary procedure can become impractically difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand.

In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It is a useful concept for understanding the generation of vorticity in cyclogenesis, especially along the polar front, and in analyzing flow in the ocean.

<span class="mw-page-title-main">Newman–Penrose formalism</span> Notation in general relativity

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

The intent of this article is to highlight the important points of the derivation of the Navier–Stokes equations as well as its application and formulation for different families of fluids.

In fluid mechanics and mathematics, a capillary surface is a surface that represents the interface between two different fluids. As a consequence of being a surface, a capillary surface has no thickness in slight contrast with most real fluid interfaces.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.

A non-expanding horizon (NEH) is an enclosed null surface whose intrinsic structure is preserved. An NEH is the geometric prototype of an isolated horizon which describes a black hole in equilibrium with its exterior from the quasilocal perspective. It is based on the concept and geometry of NEHs that the two quasilocal definitions of black holes, weakly isolated horizons and isolated horizons, are developed.

<span class="mw-page-title-main">Rock mass plasticity</span>

Plasticity theory for rocks is concerned with the response of rocks to loads beyond the elastic limit. Historically, conventional wisdom has it that rock is brittle and fails by fracture while plasticity is identified with ductile materials. In field scale rock masses, structural discontinuities exist in the rock indicating that failure has taken place. Since the rock has not fallen apart, contrary to expectation of brittle behavior, clearly elasticity theory is not the last work.

K-epsilon (k-ε) turbulence model is the most common model used in computational fluid dynamics (CFD) to simulate mean flow characteristics for turbulent flow conditions. It is a two equation model that gives a general description of turbulence by means of two transport equations. The original impetus for the K-epsilon model was to improve the mixing-length model, as well as to find an alternative to algebraically prescribing turbulent length scales in moderate to high complexity flows.

In physics, the first law of thermodynamics is an expression of the conservation of total energy of a system. The increase of the energy of a system is equal to the sum of work done on the system and the heat added to that system:

The porous medium equation, also called the nonlinear heat equation, is a nonlinear partial differential equation taking the form:

References

  1. 1 2 Landau, L.D.; Lifshitz, E.M. (1987). Fluid Mechanics (PDF). Course of Theoretical Physics. Vol. 6 (2nd ed.). Butterworth-Heinemann. pp. 192–194. ISBN   978-0-7506-2767-2. OCLC   936858705.
  2. Kundu, P.K.; Cohen, I.M.; Dowling, D.R. (2012). Fluid Mechanics (5th ed.). Academic Press. pp. 123–125. ISBN   978-0-12-382100-3.
  3. Pedlosky, J. (2003). Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. Springer. p. 19. ISBN   978-3540003403.
  4. Laguerre, Onrawee (2010-05-21), Farid, Mohammed M. (ed.), "Heat Transfer and Air Flow in a Domestic Refrigerator", Mathematical Modeling of Food Processing (1 ed.), CRC Press, pp. 453–482, doi:10.1201/9781420053548-20, ISBN   978-0-429-14217-8 , retrieved 2023-05-07
  5. Swift, G. W.; Wardt, W. C. (October–December 1996). "Simple Harmonic Analysis of Regenerators". Journal of Thermophysics and Heat Transfer. 10 (4): 652–662. doi:10.2514/3.842.
  6. Cuffey, K. M. (2010). The physics of glaciers. W. S. B. Paterson (4th ed.). Burlington, MA. ISBN   978-0-12-369461-4. OCLC   488732494.

Further reading