Names | |
---|---|
IUPAC name Methyl (1S,4aS,7aS)-1-(β-D-glucopyranosyloxy)-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylate | |
Systematic IUPAC name Methyl (1S,4aS,7aS)-7-(hydroxymethyl)-1-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylate | |
Other names Jasminoidin; [1] methyl 1-(hexopyranosyloxy)-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylate | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.208.687 |
EC Number |
|
KEGG | |
MeSH | geniposide |
PubChem CID | |
UNII | |
| |
| |
Properties | |
C17H24O10 | |
Molar mass | 388.369 g·mol−1 |
Melting point | 245.23 °C (473.41 °F; 518.38 K) |
Boiling point | 641.4±55.0 °C at 760 mmHg |
log P | -1.854 |
Acidity (pKa) | 12.80±0.70 |
Hazards | |
GHS labelling: | |
Danger | |
H301 | |
P264, P270, P301+P310, P321, P330, P405, P501 | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Geniposide, the glycoside form of genipin, is a bioactive iridoid glycoside that is found in a wide variety of medicinal herbs, such as Gardenia jasminoides (fruits) . [2] Geniposide shows several pharmacological effects (in vitro and in vivo) including neuroprotective, antidiabetic, hepatoprotective, anti-inflammatory, analgesic, antidepressant-like, cardioprotective, antioxidant, immune-regulatory, antithrombotic and antitumoral activity. [3] These pharmacology benefits arise through the modulating action of geniposide on several proteins and genes that are associated with inflammatory and oxidative stress processes. [4]
A growing body of evidence shows that the neuroprotective benefit of geniposide probably arises from its agonist action on the glucagon-like peptide-1(GLP-1R) receptor. When this receptor is activated neurotrophic effects were induced in cells, such as neurite outgrowth, reducing amyloid plaques, inhibiting τ phosphorylation, preventing memory impairment and loss of synapses, reducing oxidative stress and the chronic inflammatory response., [5] [6] These effects could be promising in the treatment of Alzheimer's and Parkinson's diseases.
Studies on depressive rats (induced by chronic unpredictable mild stress) have shown that the antidepressant effect of geniposide is similar to fluoxetine. This effect could be mediated by geniposide's effects on the hypothalamus–pituitary–adrenal (HPA) axis, whose dysfunction has been associated with the pathogenesis of depression. In a depressive state the serum levels of adrenocorticotropic hormone and cortisol are increased, as well as hypothalamic corticotropin-releasing hormone gene expression. The dysfunction of the HPA axis plays an important rule in the serotonergic system. When HPA axis shows high levels of activity, this leads to a hyper secretion of cortisol and corticotropin-releasing hormone, in the opposite case the serotonergic system suffers a downregulation and decreases its activity. Low serotonergic system activity results in hyporesponsivity of 5-hydroxytryptamine (5-HT) in the hippocampus. [7] [8] Geniposide was able to reverse the high levels of cortisol and hypothalamic corticotropin-releasing hormone gene expression, which lead to an increase of 5-HT in the hippocampus and 5-Hydroxyindoleacetic acid (5-HIAA) in striatum. [7]
Geniposide shows a reasonable capacity of induction of endogenous antioxidative proteins, which offer protection against cell injury by oxidative stress. A study with hippocampal neurons revealed that geniposide could enhance cytoprotection, though the activation of the enzyme Phosphoinositide 3-kinases (PI3K) and the induction of the nuclear translocation of erythroid 2–related factor 2 (NFE2L2). [9] The PI3K/Nrf2 pathway signaling triggers several responses, such as the expression of antioxidative enzymes heme oxygenase (HO-1), superoxide dismutase (SOD) and NAD(P)H dehydrogenase quinone 1 (NQO1), reducing accumulation of reactive oxygen species (ROS). [10]
Several studies have shown geniposide's potential to treat inflammatory diseases, such as arthritis, due to its effect in the production on cytokine and pro-inflammatory mediators. In rats with arthritis, oral administration of geniposide (30, 60, and 120 mg/kg) shows a decrease in T helper 17 cell cytokines such as interleukin-2 (IL-2) and an increase in regulatory T-cell cytokines in mesenteric lymph node lymphocytes, like interleukin-4 (IL-4) and transforming growth factor beta 1 (TGF-beta 1). [2] [11] Another study revealed that geniposide's effect was probably enhanced by immunoregulation in immunologic tissues, such as gut-associated lymphoid tissue (GALT). When regulating, the mesenteric lymph node triggers the amelioration of the JNK-mitogen-activated protein kinases (MAPKs) and p38 mitogen-activated protein kinases (p38MAPKs) signaling cascades. The same pathway was observed in peripheral blood lymphocytes. [12]
Geniposide has been reported as having a hypoglycemic effect, which could be mediated by hepatic glucose-metabolizing enzymes, such as hepatic glycogen phosphorylase (GP) and glucose-6-phosphatase (G6Pase). [13] GP and G6Pase are induced by chronic hyperglycemia. High levels of blood sugar increased their expression and activity, which lead to an increase in hepatic glucose production and unbalance the glucose metabolism. [14] A study with the high-fat diet (HFD) - streptozotocin (STZ) diabetic mouse model using geniposides doses of 200 and 400 (mg/kg) has shown a significant decrease in body weight, blood glucose, insulin and triglycerides (TG) levels. An increase in the activity of GP and G6Pas was also observed in this diabetic mouse model, but when the same geniposide doses were administered, activity decreased significantly. [13]
Studies show that oral (50 mg/kg), intravenous (50 mg/kg) and intramuscular (8 mg/kg) administration of Geniposide follow a one-compartment model and nasal administration (8 mg/kg) a two-compartment model. The absolute bioavailability is higher in intramuscular administration (F = 72,69%) followed by nasal administration (F = 49,54%). [15]
In rats, after an oral administration of geniposide (200 mg/kg) the highest tissue concentration was observed in the kidney (1.12 ± 0.37 μg/ml) with a tmax of 2h. The tissue distribution, measured in terms of AUC0→4h values, follows kidney > spleen> liver > heart > lung> brain. [16]
Using ultrahigh-performance liquid chromatography 17 metabolites were identified in plasma and 31 in urine. In vivo, geniposide can follow two distinct metabolic pathways. The main metabolic pathway involves the hydrolysis of the hydroxyl groups followed by a series of reactions, such as taurine, sulfate and glucuronide conjugation. [3] [17]
In humans, the majority of excretion of Geniposide is urinary. [3]
Hepatoxicity is a safety issue of geniposide. Several studies in rats have shown an increase in serum alanine aminotransferase and aspartate aminotransferase activities (oral administration of 320 mg/kg body weight). [18] A 2012 study linked geniposide hepatoxicity with oxidative stress, due to a decrease of total superoxide dismutase activity and an increase of malondialdehyde concentration in rats’ livers. These results were associated only with a high dose of geniposide (greater than 574 mg/kg). [19] A repeated dosing study has shown that geniposide is safe at a dosage of 24.3 mg/kg or less. [19]
Acute nephrotoxicity was observed after an oral administration of geniposide (dose of 1.2 g/kg) on jaundice rats. Increases in serum levels of blood urea nitrogen and creatinine were detected. [20]
Long-term oral intake of Chinese herbal liquid containing geniposide may play a role in the pathogenesis of idiopathic mesenteric phlebosclerosis. [21]
Dimethyl sulfone (DMSO2) is an organosulfur compound with the formula (CH3)2SO2. It is also known by several other names including methyl sulfone and (especially in alternative medicine) methylsulfonylmethane (MSM). This colorless solid features the sulfonyl functional group and is the simplest of the sulfones. It is relatively inert chemically and is able to resist decomposition at elevated temperatures. It occurs naturally in some primitive plants, is present in small amounts in many foods and beverages, and is marketed (under the MSM name) as a dietary supplement. It is sometimes used as a cutting agent for illicitly manufactured methamphetamine. It is also commonly found in the atmosphere above marine areas, where it is used as a carbon source by the airborne bacteria Afipia. Oxidation of dimethyl sulfoxide produces the sulfone, both under laboratory conditions and metabolically.
Olney's lesions, also known as NMDA receptor antagonist neurotoxicity (NAT), is a form of brain damage observed in rats and certain other model animals exposed to large quantities of psychoactive drugs that inhibit the normal operation of the neuronal NMDA receptor. Such lesions are common in anesthesia, as well as certain psychiatric treatments.
Gingerol ([6]-gingerol) is a phenolic phytochemical compound found in fresh ginger that activates heat receptors on the tongue. It is normally found as a pungent yellow oil in the ginger rhizome, but can also form a low-melting crystalline solid. This chemical compound is found in all members of the Zingiberaceae family and is high in concentrations in the grains of paradise as well as an African Ginger species.
Neuroprotection refers to the relative preservation of neuronal structure and/or function. In the case of an ongoing insult the relative preservation of neuronal integrity implies a reduction in the rate of neuronal loss over time, which can be expressed as a differential equation. It is a widely explored treatment option for many central nervous system (CNS) disorders including neurodegenerative diseases, stroke, traumatic brain injury, spinal cord injury, and acute management of neurotoxin consumption. Neuroprotection aims to prevent or slow disease progression and secondary injuries by halting or at least slowing the loss of neurons. Despite differences in symptoms or injuries associated with CNS disorders, many of the mechanisms behind neurodegeneration are the same. Common mechanisms of neuronal injury include decreased delivery of oxygen and glucose to the brain, energy failure, increased levels in oxidative stress, mitochondrial dysfunction, excitotoxicity, inflammatory changes, iron accumulation, and protein aggregation. Of these mechanisms, neuroprotective treatments often target oxidative stress and excitotoxicity—both of which are highly associated with CNS disorders. Not only can oxidative stress and excitotoxicity trigger neuron cell death but when combined they have synergistic effects that cause even more degradation than on their own. Thus limiting excitotoxicity and oxidative stress is a very important aspect of neuroprotection. Common neuroprotective treatments are glutamate antagonists and antioxidants, which aim to limit excitotoxicity and oxidative stress respectively.
A branched-chain amino acid (BCAA) is an amino acid having an aliphatic side-chain with a branch. Among the proteinogenic amino acids, there are three BCAAs: leucine, isoleucine, and valine. Non-proteinogenic BCAAs include 2-aminoisobutyric acid and alloisoleucine.
Myricetin is a member of the flavonoid class of polyphenolic compounds, with antioxidant properties. Common dietary sources include vegetables, fruits, nuts, berries, tea, and red wine.
Dimethyl phthalate (DMP) is an organic compound and phthalate ester. it is a colourless and oily liquid that is soluble in organic solvents, but which is only poorly soluble in water.
Nesfatin-1 is a neuropeptide produced in the hypothalamus of mammals. It participates in the regulation of hunger and fat storage. Increased nesfatin-1 in the hypothalamus contributes to diminished hunger, a 'sense of fullness', and a potential loss of body fat and weight.
Ursolic acid, is a pentacyclic triterpenoid identified in the epicuticular waxes of apples as early as 1920 and widely found in the peels of fruits, as well as in herbs and spices like rosemary and thyme.
Buformin (1-butylbiguanide) is an oral antidiabetic drug of the biguanide class, chemically related to metformin and phenformin. Buformin was marketed by German pharmaceutical company Grünenthal as Silubin.
Benoxaprofen, also known as Benoxaphen, is a chemical compound with the formula C16H12ClNO3. It is a non-steroidal anti-inflammatory drug (NSAID) of the propionic acid class, and was marketed under the brand name Opren in the United Kingdom and Europe by Eli Lilly and Company (commonly referred to as Lilly), and as Oraflex in the United States of America (USA). Lilly suspended sales of Oraflex in 1982 after reports from the British government and the United States Food and Drug Administration (US FDA) of adverse effects and deaths linked to the drug.
Nuclear factor erythroid 2-related factor 2 (NRF2), also known as nuclear factor erythroid-derived 2-like 2, is a transcription factor that in humans is encoded by the NFE2L2 gene. NRF2 is a basic leucine zipper (bZIP) protein that may regulate the expression of antioxidant proteins that protect against oxidative damage triggered by injury and inflammation, according to preliminary research. In vitro, NRF2 binds to antioxidant response elements (AREs) in the promoter regions of genes encoding cytoprotective proteins. NRF2 induces the expression of heme oxygenase 1 in vitro leading to an increase in phase II enzymes. NRF2 also inhibits the NLRP3 inflammasome.
Kelch-like ECH-associated protein 1 is a protein that in humans is encoded by the Keap1 gene.
Amine oxidase, copper containing 3 (AOC3), also known as vascular adhesion protein (VAP-1) and HPAO is an enzyme that in humans is encoded by the AOC3 gene on chromosome 17. This protein is a member of the semicarbazide-sensitive amine oxidase family of enzymes and is associated with many vascular diseases.
Antalarmin (CP-156,181) is a drug that acts as a CRH1 antagonist.
Leonurine is a pseudoalkaloid that has been isolated from Leonotis leonurus, Leonotis nepetifolia, Leonurus japonicus, Leonurus cardiaca (motherwort), Leonurus sibiricus, as well as other plants of family Lamiaceae. Leonurine is easily extracted into water.
Salidroside (rhodioloside) is a glucoside of tyrosol found in the plant Rhodiola rosea. It has been studied, along with rosavin, as one of the potential compounds responsible for the putative antidepressant and anxiolytic actions of this plant. Salidroside may be more active than rosavin, even though many commercially marketed Rhodiola rosea extracts are standardized for rosavin content rather than salidroside.
Eriocitrin is a flavanone-7-O-glycoside between the flavanone eriodictyol and the disaccharide rutinose. It is commonly found in lemons and other citrus fruits. It is colloquially called lemon flavonoid or a citrus flavonoid, one of the plant pigments that bring color to fruit and flowers. This antioxidant also predominates in Peppermint infusions.
Deoxygedunin, or 14,15-deoxygedunin, is a tetranortriterpenoid isolated from the Indian neem tree a plant that has been in traditional Indian medicine since ancient times as a remedy for various ailments.
Sonlicromanol (KH176) is a clinical-stage oral drug compound developed by Khondrion as a potential treatment for inherited mitochondrial diseases, such as Leigh's Disease, MELAS and LHON. Due to dysfunctional mitochondria, an increased level of cellular reactive oxygen species (ROS) is observed in these patients, causing a wide range of symptoms. The active metabolite of Sonlicromanol has several mechanisms of action, acting both as antioxidant and as reactive oxygen species (ROS)-redox modulator. Through selective suppression of microsomal prostaglandin E synthase-1 (mPGES-1), Sonlicromanol even has potency as anti-cancer drug for mPGES-1 overexpressing cancer like prostate cancer. Currently, Sonlicromanol is in phase II clinical trial in the KHENERGYZE, KHENEREXT and KHENERGYC studies as potent candidate in treatment for mitochondrial diseases.