Geobacillus thermoglucosidasius

Last updated

Geobacillus thermoglucosidasius
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Bacillota
Class: Bacilli
Order: Bacillales
Family: Bacillaceae
Genus: Geobacillus
Species:
G. thermoglucosidasius
Binomial name
Geobacillus thermoglucosidasius

Geobacillus thermoglucosidasius is a thermophilic gram-positive bacterium, and a member of the Bacillota phylum. It was first isolated from soil in Japan in 1983. [1]

Contents

The species name thermoglucosidasius comes from the words therme denoting heat, and glucosidasius denoting starch-hydrolyzing glucosidase activity.

Biology and biochemistry

G. thermoglucosidasius is gram-positive (bacterium that retains Crystal violet dye during gram-staining) and facultatively anaerobic(produces ATP by aerobic respiration if oxygen is present, but capable of switching to fermentation or anaerobic respiration if oxygen is absent). [1] G. thermoglucosidasius is classified as a thermophile as optimal growth occurs at 60 °C (140 °F), although strains have demonstrated ability to grow at temperatures between 37 °C (98.6 °F) and 68 °C (154.4 °F). [2]

Their rod-shaped cells are less than 3.0 micrometers (μm) long and less than 0.9 μm in diameter. [2] Under a microscope, the cells are observed to occur either singly or in short chains, while possessing peritrichous fagella for motility or appearing non-motile. [2]

Vegetative G. thermoglucosidasius sporulates, producing one endospore per cell located terminally or subterminally in slightly swollen or non-swollen sporangia. [2] It can live on a wide variety of substrates. G. thermoglucosidasius uses mixed-acid fermentation in anaerobic conditions, producing lactate, succinate, formate, ethanol, acetate and carbon dioxide. Growth can be driven by aerobic or anaerobic respiration, using a large variety of redox pairs.

Taxonomy

Prior to 1997, G. thermoglucosidasius was categorized into the genus Bacillus in Group 5, a phenotypically and phylogenetically coherent group of thermophilic bacilli displaying very high similarity among their 16S rRNA sequences. However, on the basis of physiological characteristics, fatty acid analysis, DNA hybridization studies and 16S rRNA gene sequence analysis, Nazina et al. proposed the creation of the genus Geobacillus to contain B. thermoglucosidasius, B. stearothermophilus (type species), B. thermoleovorans, B. thermocatenulatus, B. kaustophilus, and B. thermodenitricans. [2] The type strain of G. thermoglucosidasius was subsequently chosen as strain DSM....

Genome

To date, three completed public genome sequences are accessible. [3] [4] [5] ...

Metabolism

Most thermoglucosidasius strains have hydrolytic activity to starch, gelatin, and pullulan, as well as producing acid from adonitol, cellobiose, inositol, and D-xylitol. Colonies are offwhite and mucoid.

Use in Biotechnology

G. thermoglucosidasius is the source of the enzyme BtgZI, a type IIS Restriction enzyme used in Golden Gate Cloning. [6]

Related Research Articles

<i>Bacillus</i> Genus of bacteria

Bacillus is a genus of Gram-positive, rod-shaped bacteria, a member of the phylum Bacillota, with 266 named species. The term is also used to describe the shape (rod) of other so-shaped bacteria; and the plural Bacilli is the name of the class of bacteria to which this genus belongs. Bacillus species can be either obligate aerobes which are dependent on oxygen, or facultative anaerobes which can survive in the absence of oxygen. Cultured Bacillus species test positive for the enzyme catalase if oxygen has been used or is present.

The Thermomicrobia is a group of thermophilic green non-sulfur bacteria. Based on species Thermomicrobium roseum and Sphaerobacter thermophilus, this bacteria class has the following description:

<span class="mw-page-title-main">Sulfur-reducing bacteria</span> Microorganisms able to reduce elemental sulfur to hydrogen sulfide

Sulfur-reducing bacteria are microorganisms able to reduce elemental sulfur (S0) to hydrogen sulfide (H2S). These microbes use inorganic sulfur compounds as electron acceptors to sustain several activities such as respiration, conserving energy and growth, in absence of oxygen. The final product of these processes, sulfide, has a considerable influence on the chemistry of the environment and, in addition, is used as electron donor for a large variety of microbial metabolisms. Several types of bacteria and many non-methanogenic archaea can reduce sulfur. Microbial sulfur reduction was already shown in early studies, which highlighted the first proof of S0 reduction in a vibrioid bacterium from mud, with sulfur as electron acceptor and H
2
as electron donor. The first pure cultured species of sulfur-reducing bacteria, Desulfuromonas acetoxidans, was discovered in 1976 and described by Pfennig Norbert and Biebel Hanno as an anaerobic sulfur-reducing and acetate-oxidizing bacterium, not able to reduce sulfate. Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction. Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds. In general, sulfate-reducing bacteria are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its abundancy and thermodynamic stability, sulfate is the most studied electron acceptor for anaerobic respiration that involves sulfur compounds. Elemental sulfur, however, is very abundant and important, especially in deep-sea hydrothermal vents, hot springs and other extreme environments, making its isolation more difficult. Some bacteria – such as Proteus, Campylobacter, Pseudomonas and Salmonella – have the ability to reduce sulfur, but can also use oxygen and other terminal electron acceptors.

Eggerthella is a bacterial genus of Actinomycetota, in the family Coriobacteriaceae. Members of this genus are anaerobic, non-sporulating, non-motile, Gram-positive bacilli that grow singly, as pairs, or in short chains. They are found in the human colon and feces and have been implicated as a cause of ulcerative colitis, liver and anal abscesses and systemic bacteremia.

<i>Bacillus mycoides</i> Species of bacterium

Bacillus mycoides is a bacterium of the genus Bacillus. Like other Bacillus species, B. mycoides is Gram positive, rod-shaped, and forms spores. B. mycoides is distinguished from other Bacillus species by its unusual growth on agar plates, where it forms expansive hairy colonies with characteristic swirls.

<i>Geobacillus stearothermophilus</i> Species of bacterium

Geobacillus stearothermophilus is a rod-shaped, Gram-positive bacterium and a member of the phylum Bacillota. The bacterium is a thermophile and is widely distributed in soil, hot springs, ocean sediment, and is a cause of spoilage in food products. It will grow within a temperature range of 30 to 75 °C. Some strains are capable of oxidizing carbon monoxide aerobically. It is commonly used as a challenge organism for sterilization validation studies and periodic check of sterilization cycles. The biological indicator contains spores of the organism on filter paper inside a vial. After sterilizing, the cap is closed, an ampule of growth medium inside of the vial is crushed and the whole vial is incubated. A color and/or turbidity change indicates the results of the sterilization process; no change indicates that the sterilization conditions were achieved, otherwise the growth of the spores indicates that the sterilization process has not been met. Recently a fluorescent-tagged strain, Rapid Readout(tm), is being used for verifying sterilization, since the visible blue fluorescence appears in about one-tenth the time needed for pH-indicator color change, and an inexpensive light sensor can detect the growing colonies.

Pyrobaculum is a genus of the Thermoproteaceae.

<i>Pyrococcus</i> Genus of archaea

Pyrococcus is a genus of Thermococcaceaen archaean.

Hydrogenobacter thermophilus is an extremely thermophilic, straight rod (bacillus) bacterium. TK-6 is the type strain for this species. It is a Gram negative, non-motile, obligate chemolithoautotroph. It belongs to one of the earliest branching order of Bacteria. H. thermophilus TK-6 lives in soil that contains hot water. It was one of the first hydrogen oxidizing bacteria described leading to the discovery, and subsequent examination of many unique proteins involved in its metabolism. Its discovery contradicted the idea that no obligate hydrogen oxidizing bacteria existed, leading to a new understanding of this physiological group. Additionally, H. thermophilus contains a fatty acid composition that had not been observed before.

Armatimonas rosea is a Gram-negative bacterium and also the first species to be characterized within the phylum Armatimonadota. The Armatimonadota were previously known as candidate phylum OP10. OP10 was composed solely of environmental 16S rRNA gene clone sequences prior to A. rosea's discovery.

Fimbriimonas ginsengisoli is a Gram-negative bacterium and the first representative of the class Fimbriimonadia within the phylum Armatimonadota. The Armatimonadota were previously known as candidate phylum OP10. OP10 was composed solely of environmental 16S rRNA gene clone sequences prior to F. ginsengisoli's relative, Armatimonas rosea's discovery.

<span class="mw-page-title-main">Glucan 1,4-alpha-maltohydrolase</span>

Glucan 1,4-alpha-maltohydrolase is an enzyme with systematic name 4-alpha-D-glucan alpha-maltohydrolase. This enzyme catalyses the following chemical reaction

Rhodoferax is a genus of Betaproteobacteria belonging to the purple nonsulfur bacteria. Originally, Rhodoferax species were included in the genus Rhodocyclus as the Rhodocyclus gelatinous-like group. The genus Rhodoferax was first proposed in 1991 to accommodate the taxonomic and phylogenetic discrepancies arising from its inclusion in the genus Rhodocyclus. Rhodoferax currently comprises four described species: R. fermentans, R. antarcticus, R. ferrireducens, and R. saidenbachensis. R. ferrireducens, lacks the typical phototrophic character common to two other Rhodoferax species. This difference has led researchers to propose the creation of a new genus, Albidoferax, to accommodate this divergent species. The genus name was later corrected to Albidiferax. Based on geno- and phenotypical characteristics, A. ferrireducens was reclassified in the genus Rhodoferax in 2014. R. saidenbachensis, a second non-phototrophic species of the genus Rhodoferax was described by Kaden et al. in 2014.

Lactiplantibacillus fabifermentans is a member of the genus Lactiplantibacillus and a type of lactic acid bacteria (LAB), a group of Gram-positive bacteria that produce lactic acid as their major fermented end product and that are often involved in food fermentation. L. fabifermentans was proposed in 2009 as a new species, after the type strain LMG 24284T has been isolated from Ghanaian cocoa fermentation. Analysis of the 16S rRNA gene sequence demonstrated that this species is a member of the Lactobacillus plantarum species group but further analysis demonstrated that it is possible to differentiate it from the nearest neighbors by means of DNA-DNA hybridization experiments, pheS sequence analysis, whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism analysis and biochemical characterization.

Symbiobacterium thermophilum is a symbiotic thermophile that depends on co-culture with a Bacillus strain for growth. It is Gram-negative and tryptophanase-positive, with type strain T(T). It is the type species of its genus. Symbiobacterium is related to the Gram-positive Bacillota and Actinomycetota, but belongs to a lineage that is distinct from both.S. thermophilum has a bacillus shaped cell structure with no flagella. This bacterium is located throughout the environment in soils and fertilizers.

Cryptobacterium curtum is a Gram-positive anaerobic rod bacteria isolated from human mouths.

Trueperella pyogenes is a species of nonmotile, facultatively anaerobic, Gram-positive bacteria. The cells typically measure 0.5 by 2.0 μm. They appear as pleomorphic or coccoid rods. They tend to be grouped singly or in short chains but are sometimes grouped into V-shaped pairs.

Geobacillus jurassicus is a thermophilic bacterium first isolated from a high-temperature petroleum reservoir. It is aerobic, gram-positive, rod-shaped, moderately thermophilic, chemoorganotrophic, and endospore-forming, with type species DS1T.

Desulfurobacterium atlanticum is a thermophilic, anaerobic and chemolithoautotrophic bacterium from the family Aquificaceae. In 2006 it was isolated from marine hydrothermal systems and proposed to become a new bacterial species.

Blastopirellula marina, a member of the phylum Planctomycetota, is a halotolerant bacterium inhabiting aquatic environments. B. marina was determined to be a new species by utilizing 16s rRNA sequence analysis.

References

  1. 1 2 Suzuki (1983). "Bacillus thermoglucosidasius sp. nov., a new species of obligately thermophilic bacilli". Syst. Appl. Microbiol. 4 (4): 487–495. doi:10.1016/s0723-2020(83)80006-x. PMID   23194806.
  2. 1 2 3 4 5 Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (Mar 2001). "Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th". Int J Syst Evol Microbiol. 51 (2): 433–46. doi: 10.1099/00207713-51-2-433 . PMID   11321089.
  3. "Geobacillus thermoglucosidasius C56-YS93, complete genome".
  4. "Geobacillus thermoglucosidasius Y4.1MC1, complete genome".
  5. "Geobacillus thermoglucosidans TNO-09.020, complete genome".
  6. https://www.neb.com/en-us/products/r0703-btgzi