Gi-Fi

Last updated

Gi-Fi or gigabit wireless refers to wireless communication at a bit rate of at least one gigabit per second (Gbit/s).

By 2004 some trade press used the term "Gi-Fi" to refer to faster versions of the IEEE 802.11 standards marketed under the trademark Wi-Fi. [1]

In 2008 researchers at the University of Melbourne demonstrated a transceiver on a single integrated circuit (chip) operating at 60  GHz on the CMOS process, allowing wireless communication speeds of up to 5 Gbit/s within a 10-metre (33-foot) range. [2] Some press reports called this "GiFi". [3] [4] It was developed by the Melbourne University-based laboratories of NICTA (National ICT Australia Limited). [3]

In 2009, the Wireless Gigabit Alliance was formed to promote the technology. It used the term "WiGig" which avoided trademark confusion. [5]

Related Research Articles

<span class="mw-page-title-main">IEEE 802.11</span> Wireless network standard

IEEE 802.11 is part of the IEEE 802 set of local area network (LAN) technical standards, and specifies the set of medium access control (MAC) and physical layer (PHY) protocols for implementing wireless local area network (WLAN) computer communication. The standard and amendments provide the basis for wireless network products using the Wi-Fi brand and are the world's most widely used wireless computer networking standards. IEEE 802.11 is used in most home and office networks to allow laptops, printers, smartphones, and other devices to communicate with each other and access the Internet without connecting wires. IEEE 802.11 is also a basis for vehicle-based communication networks with IEEE 802.11p.

<span class="mw-page-title-main">Wi-Fi</span> Wireless local area network

Wi-Fi is a family of wireless network protocols based on the IEEE 802.11 family of standards, which are commonly used for local area networking of devices and Internet access, allowing nearby digital devices to exchange data by radio waves. These are the most widely used computer networks, used globally in home and small office networks to link devices and to provide Internet access with wireless routers and wireless access points in public places such as coffee shops, hotels, libraries, and airports.

4G is the fourth generation of broadband cellular network technology, succeeding 3G and preceding 5G. A 4G system must provide capabilities defined by ITU in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television.

The V band ("vee-band") is a standard designation by the Institute of Electrical and Electronics Engineers (IEEE) for a band of frequencies in the microwave portion of the electromagnetic spectrum ranging from 40 to 75 gigahertz (GHz). The V band is not heavily used, except for millimeter wave radar research and other kinds of scientific research. It should not be confused with the 600–1,000 MHz range of Band V of the UHF frequency range.

<span class="mw-page-title-main">Wi-Fi Alliance</span> Non-profit organization that owns the Wi-Fi trademark

The Wi-Fi Alliance is a non-profit organization that owns the Wi-Fi trademark. Manufacturers may use the trademark to brand products certified for Wi-Fi interoperability. It is based in Austin, Texas.

<span class="mw-page-title-main">Ethernet physical layer</span> Electrical or optical properties between network devices

The physical-layer specifications of the Ethernet family of computer network standards are published by the Institute of Electrical and Electronics Engineers (IEEE), which defines the electrical or optical properties and the transfer speed of the physical connection between a device and the network or between network devices. It is complemented by the MAC layer and the logical link layer. An implementation of a specific physical layer is commonly referred to as PHY.

<span class="mw-page-title-main">Gigabit wireless</span> Telecommunications classification

Gigabit wireless is the name given to wireless communication systems whose data transfer speeds reach or exceed one gigabit per second. Such speeds are achieved with complex modulations of the signal, such as quadrature amplitude modulation (QAM) or signals spanning many frequencies. When a signal spans many frequencies, physicists refer that a wide bandwidth signal. In the communication industry, many wireless internet service providers and cell phone companies deploy wireless radio frequency antennas to backhaul core networks, connect businesses, and even individual residential homes.

<span class="mw-page-title-main">LTE Advanced</span> Mobile communication standard

LTE Advanced is a mobile communication standard and a major enhancement of the Long Term Evolution (LTE) standard. It was formally submitted as a candidate 4G to ITU-T in late 2009 as meeting the requirements of the IMT-Advanced standard, and was standardized by the 3rd Generation Partnership Project (3GPP) in March 2011 as 3GPP Release 10.

<span class="mw-page-title-main">Wireless Gigabit Alliance</span> Trade association

The Wireless Gigabit Alliance was a trade association that developed and promoted the adoption of multi-gigabit per second speed wireless communications technology "WiGig" operating over the unlicensed 60 GHz frequency band. The alliance was subsumed by the Wi-Fi Alliance in March 2013.

<span class="mw-page-title-main">WiGig</span> Type of wireless local area network based on IEEE 802.11

WiGig, alternatively known as 60 GHz Wi-Fi, refers to a set of 60 GHz wireless network protocols. It includes the current IEEE 802.11ad standard and also the IEEE 802.11ay standard.

<span class="mw-page-title-main">Wi-Fi Direct</span> Wi-Fi standard for peer-to-peer wireless connections

Wi-Fi Direct is a Wi-Fi standard for wireless connections that allows two devices to establish a direct Wi-Fi connection without an intermediary wireless access point, router, or Internet connection. Wi-Fi Direct is single-hop communication, rather than multi-hop communication like wireless ad hoc networks. The Wi-Fi Direct standard was specified in 2009.

<span class="mw-page-title-main">John O'Sullivan (engineer)</span> Australian engineer

John O'Sullivan is an Australian engineer.

Wilocity was a fabless semiconductor company based in California founded in 2007 developing 60 GHz multi-gigabit wireless chipsets for both the mobile computing platform and peripheral markets. Wilocity was founded in March 2007 by executives and engineers from Intel's Wi-Fi Centrino group. While Wilocity is based in California, most of its employees are in Israel. Based on the WiGig specification, Wilocity's Wireless PCI Express (wPCIe) technology enables multi-gigabit wireless for applications including I/O, networking and video.

IEEE 802.11ac-2013 or 802.11ac is a wireless networking standard in the IEEE 802.11 set of protocols, providing high-throughput wireless local area networks (WLANs) on the 5 GHz band. The standard has been retroactively labelled as Wi-Fi 5 by Wi-Fi Alliance.

IEEE 802.11ad is an amendment to the IEEE 802.11 wireless networking standard, developed to provide a Multiple Gigabit Wireless System (MGWS) standard in the 60 GHz band, and is a networking standard for WiGig networks. Because it uses the V band of the millimeter wave (mmW) band, the range of IEEE 802.11ad communication would be rather limited compared to other conventional Wi-Fi systems. However, its great bandwidth enables the transmission of data at high data rates up to multiple gigabits per second, enabling usage scenarios like transmission of uncompressed UHD video over the wireless network.

<span class="mw-page-title-main">Li-Fi</span> Wireless communication technology visible light story

Li-Fi is a wireless communication technology which utilizes light to transmit data and position between devices. The term was first introduced by Harald Haas during a 2011 TEDGlobal talk in Edinburgh.

Multiple-input, multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) is the dominant air interface for 4G and 5G broadband wireless communications. It combines multiple-input, multiple-output (MIMO) technology, which multiplies capacity by transmitting different signals over multiple antennas, and orthogonal frequency-division multiplexing (OFDM), which divides a radio channel into a large number of closely spaced subchannels to provide more reliable communications at high speeds. Research conducted during the mid-1990s showed that while MIMO can be used with other popular air interfaces such as time-division multiple access (TDMA) and code-division multiple access (CDMA), the combination of MIMO and OFDM is most practical at higher data rates.

IEEE 802.3bz, NBASE-T and MGBASE-T are standards released in 2016 for Ethernet over twisted pair at speeds of 2.5 and 5 Gbit/s. These use the same cabling as the ubiquitous Gigabit Ethernet, yet offer higher speeds. The resulting standards are named 2.5GBASE-T and 5GBASE-T.

IEEE 802.11ay, Enhanced Throughput for Operation in License-exempt Bands above 45 GHz, is a follow-up to IEEE 802.11ad WiGig standard which quadruples the bandwidth and adds MIMO up to 8 streams. Development started in 2015 and the final standard IEEE 802.11ay-2021 was approved in March 2021.

<span class="mw-page-title-main">IEEE 802.11be</span> Wireless networking standard in development

IEEE 802.11be, dubbed Extremely High Throughput (EHT), is a wireless networking standard in the IEEE 802.11 set of protocols, which is designated Wi-Fi 7 by Wi-Fi Alliance. It has built upon 802.11ax, focusing on WLAN indoor and outdoor operation with stationary and pedestrian speeds in the 2.4, 5, and 6 GHz frequency bands.

References

  1. "Gigabit Wi-Fi looms large: But 'Gi-Fi' pointless without robust security". The Register . November 19, 2004. Retrieved May 30, 2013.
  2. "NICTA develops a world first in semiconductor technology for the wireless home and office of the future". News release. NICTA. Archived from the original on October 10, 2008. Retrieved May 30, 2013.
  3. 1 2 Nick Miller (February 22, 2008). "$10 chip puts Australia on the fast track". The Age . Retrieved May 30, 2013.
  4. "GiFi-Latest Research In Wireless Technology Looks Promising". TechLivez. February 22, 2008. Archived from the original on March 27, 2019. Retrieved May 30, 2013.
  5. Marguerite Reardon (May 7, 2009). "Tech giants back superfast WiGig standard". CNet . Archived from the original on January 27, 2013. Retrieved May 30, 2013.