GridRepublic

Last updated

GridRepublic non-profit
Founded2004
FounderMatthew Blumberg [1]
Focus Charity
Location
OriginsUSA
Area served
Global
Key people
Matthew Blumberg
Website www.gridrepublic.org OOjs UI icon edit-ltr-progressive.svg
GridRepublic software
Developer(s) GridRepublic in coordination with BOINC
Stable release
5.10.30 (Win), 5.2.5 (Mac) / July 18, 2009;14 years ago (2009-07-18)
Operating system Cross-platform
Type Grid computing and Volunteer computing
Website www.gridrepublic.org OOjs UI icon edit-ltr-progressive.svg

GridRepublic is a BOINC Account Manager. It focuses on creating a clean and simple way to join and interact with BOINC. GridRepublic was started with a mission to raise public awareness and participation in volunteer computing with BOINC. GridRepublic was formed in 2004 by Matthew Blumberg as a mechanism to control the multiple projects from one place. The code for the BOINC software had to be redesigned to allow for the Account Manager system to be implemented.

Contents

GridRepublic's website has won numerous awards including being named finalist at the 2007 SXSW Interactive Festival [2] and the 2008 Stockholm Challenge. [3] GridRepublic has also been the recipients of a Google Grant allowing for advertising through Google. [4]

Projects

GridRepublic supports a wide range of the BOINC projects. [5] The list of supported projects and the development status of projects are periodically updated. Some of its popular projects include:

Climateprediction.net
Climate change modeling on personal computers
Einstein@home
Pulsar stars from LIGO and GEO data
Rosetta@home
Protein folding research
SETI@home
Searching radio and light data for signs of intelligent life

Software

GridRepublic is a non-profit organisation, an online application, and software. The software is open source and a customized version of BOINC. [6]

Related Research Articles

Grid computing is the use of widely distributed computer resources to reach a common goal. A computing grid can be thought of as a distributed system with non-interactive workloads that involve many files. Grid computing is distinguished from conventional high-performance computing systems such as cluster computing in that grid computers have each node set to perform a different task/application. Grid computers also tend to be more heterogeneous and geographically dispersed than cluster computers. Although a single grid can be dedicated to a particular application, commonly a grid is used for a variety of purposes. Grids are often constructed with general-purpose grid middleware software libraries. Grid sizes can be quite large.

<span class="mw-page-title-main">SETI@home</span> BOINC based volunteer computing project searching for signs of extraterrestrial intelligence

SETI@home is a project of the Berkeley SETI Research Center to analyze radio signals with the aim of searching for signs of extraterrestrial intelligence. Until March 2020, it was run as an Internet-based public volunteer computing project that employed the BOINC software platform. It is hosted by the Space Sciences Laboratory at the University of California, Berkeley, and is one of many activities undertaken as part of the worldwide SETI effort.

<span class="mw-page-title-main">Berkeley Open Infrastructure for Network Computing</span> Open source middleware system for volunteer and grid computing

The Berkeley Open Infrastructure for Network Computing is an open-source middleware system for volunteer computing. Developed originally to support SETI@home, it became the platform for many other applications in areas as diverse as medicine, molecular biology, mathematics, linguistics, climatology, environmental science, and astrophysics, among others. The purpose of BOINC is to enable researchers to utilize processing resources of personal computers and other devices around the world.

<span class="mw-page-title-main">Predictor@home</span> BOINC based volunteer computing project to predict protein structure

Predictor@home was a volunteer computing project that used BOINC software to predict protein structure from protein sequence in the context of the 6th biannual CASP, or Critical Assessment of Techniques for Protein Structure Prediction. A major goal of the project was the testing and evaluating of new algorithms to predict both known and unknown protein structures.

<span class="mw-page-title-main">World Community Grid</span> BOINC based volunteer computing project to aid scientific research

World Community Grid (WCG) is an effort to create the world's largest volunteer computing platform to tackle scientific research that benefits humanity. Launched on November 16, 2004, with proprietary Grid MP client from United Devices and adding support for Berkeley Open Infrastructure for Network Computing (BOINC) in 2005, World Community Grid eventually discontinued the Grid MP client and consolidated on the BOINC platform in 2008. In September 2021, it was announced that IBM transferred ownership to the Krembil Research Institute of University Health Network in Toronto, Ontario.

<span class="mw-page-title-main">LHC@home</span> Volunteer computing project researching particle simulations for LHC development

LHC@home is a volunteer computing project researching particle physics that uses the Berkeley Open Infrastructure for Network Computing (BOINC) platform. The project's computing power is utilized by physicists at CERN in support of the Large Hadron Collider and other experimental particle accelerators.

<span class="mw-page-title-main">Big and Ugly Rendering Project</span> BOINC based volunteer computing project for rendering videos

Big and Ugly Rendering Project (BURP) is a non-commercial volunteer computing project using the BOINC framework for the rendering of 3D graphics that has been in hibernation as of 2020. The project website currently shows the status as "extended maintenance" until 2027.

<span class="mw-page-title-main">BOINC Credit System</span> Tracking of CPU time donated to BOINC projects

Within the BOINC platform for volunteer computing, the BOINC Credit System helps volunteers keep track of how much CPU time they have donated to various projects. This ensures users are returning accurate results for both scientific and statistical reasons.

<span class="mw-page-title-main">United Devices</span> A privately held, commercial volunteer computing company

United Devices, Inc. was a privately held, commercial volunteer computing company that focused on the use of grid computing to manage high-performance computing systems and enterprise cluster management. Its products and services allowed users to "allocate workloads to computers and devices throughout enterprises, aggregating computing power that would normally go unused." It operated under the name Univa UD for a time, after merging with Univa on September 17, 2007.

<span class="mw-page-title-main">David P. Anderson</span> American research scientist (born 1955)

David Pope Anderson is an American research scientist at the Space Sciences Laboratory, at the University of California, Berkeley, and an adjunct professor of computer science at the University of Houston. Anderson leads the SETI@home, BOINC, Bossa, and Bolt software projects.

<span class="mw-page-title-main">Rosetta@home</span> BOINC based volunteer computing project researching protein folding

Rosetta@home is a volunteer computing project researching protein structure prediction on the Berkeley Open Infrastructure for Network Computing (BOINC) platform, run by the Baker lab. Rosetta@home aims to predict protein–protein docking and design new proteins with the help of about fifty-five thousand active volunteered computers processing at over 487,946 GigaFLOPS on average as of September 19, 2020. Foldit, a Rosetta@home videogame, aims to reach these goals with a crowdsourcing approach. Though much of the project is oriented toward basic research to improve the accuracy and robustness of proteomics methods, Rosetta@home also does applied research on malaria, Alzheimer's disease, and other pathologies.

The Lattice Project was a volunteer computing project that combined computing resources, Grid middleware, specialized scientific application software and web services into a comprehensive Grid computing system for scientific analysis. It ran the Genetic Algorithm for Rapid Likelihood Inference (GARLI) software to determine the relationships between different genetic samples.

SZTAKI Desktop Grid (SzDG) was a BOINC project located in Hungary run by the Computer and Automation Research Institute (SZTAKI) of the Hungarian Academy of Sciences. It closed on June 21, 2018.

<span class="mw-page-title-main">Volunteer computing</span> System where users donate computer resources to contribute to research

Volunteer computing is a type of distributed computing in which people donate their computers' unused resources to a research-oriented project, and sometimes in exchange for credit points. The fundamental idea behind it is that a modern desktop computer is sufficiently powerful to perform billions of operations a second, but for most users only between 10–15% of its capacity is used. Common tasks such as word processing or web browsing leave the computer mostly idle.

<span class="mw-page-title-main">MilkyWay@home</span> BOINC based volunteer computing project researching astronomy

MilkyWay@home is a volunteer computing project in the astrophysics category, running on the Berkeley Open Infrastructure for Network Computing (BOINC) platform. Using spare computing power from over 38,000 computers run by over 27,000 active volunteers as of November 2011, the MilkyWay@home project aims to generate accurate three-dimensional dynamic models of stellar streams in the immediate vicinity of the Milky Way. With SETI@home and Einstein@home, it is the third computing project of this type that has the investigation of phenomena in interstellar space as its primary purpose. Its secondary objective is to develop and optimize algorithms for volunteer computing.

<span class="mw-page-title-main">POEM@Home</span> BOINC based volunteer computing project

POEM@Home was a volunteer computing project hosted by the Karlsruhe Institute of Technology and running on the Berkeley Open Infrastructure for Network Computing (BOINC) software platform. It modeled protein folding using Anfinsen's dogma. POEM@Home was started in 2007 and, due to advances using GPUs that rendered the BOINC program redundant, concluded in October 2016. The POEM@home applications were proprietary.

<span class="mw-page-title-main">SLinCA@Home</span> BOINC based volunteer computing project researching LHC development

SLinCA@Home was a research project that uses Internet-connected computers to do research in fields such as physics and materials science.

<span class="mw-page-title-main">Quasi-opportunistic supercomputing</span> Computational paradigm for supercomputing

Quasi-opportunistic supercomputing is a computational paradigm for supercomputing on a large number of geographically disperse computers. Quasi-opportunistic supercomputing aims to provide a higher quality of service than opportunistic resource sharing.

<span class="mw-page-title-main">OProject@Home</span> BOINC based volunteer computing project

OProject@Home was a volunteer computing project running on the Berkeley Open Infrastructure for Network Computing (BOINC) and was based on a dedicated library OLib. The project was directed by Lukasz Swierczewski, an IT student at the College of Computer Science and Business Administration in Łomża, Computer Science and Automation Institute. As of 2016 it seems to have been abandoned.

theSkyNet A volunteer computing research project that used BOINC to carry out research in astronomy

theSkyNet was a research project that used volunteer Internet-connected computers to carry out research in astronomy. It was an initiative of the International Centre for Radio Astronomy Research (ICRAR), a joint venture of Curtin University and the University of Western Australia. theSkyNet had two projects, Sourcefinder and POGS. Both projects have been completed. theSkyNet Sourcefinder aimed to test and refine automatic radio sourcefinding algorithms in preparation for radio galaxy surveys using the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array. theSkyNet POGS used Spectral Energy Distribution fitting to calculate characteristics of many galaxies using images taken by the Pan-STARRS PS1 optical telescope in Hawaii.

References

  1. "Matthew Blumberg". Cyber.Law.Harvard.edu. August 30, 2013. Retrieved August 30, 2020.
  2. "SXSW Web Awards Finalists". Archived from the original on May 9, 2007. Retrieved August 30, 2020.
  3. "GridRepublic". Archived from the original on March 31, 2008. Retrieved August 30, 2020.
  4. "About GridRepublic" (PDF). GridRepublic. Archived from the original (PDF) on June 16, 2010. Retrieved July 19, 2009.
  5. "GridRepublic | Grid Republic | BOINC Volunteer Distributed Grid Computing". Grid Republic. Retrieved April 6, 2014.
  6. "grid". GridRepublic.org. Retrieved February 20, 2011.