Ibercivis

Last updated
Ibercivis
Logocivis.jpg
Ibercivis.gif
ibercivis screensaver
Developer(s) Spanish National Research Council and Ibercivis Foundation
Development statusInactive
Operating system Cross-platform
Platform BOINC
Average performance13.936 TeraFLOPS
Active users917
Total users924
Active hosts2375
Total hosts2383
Website boinc.ibercivis.es

Ibercivis was a volunteer computing platform which allows internet users to participate in scientific research by donating unused computer cycles to run scientific simulations and other tasks. The original project, which became operational in 2008, was a scientific collaboration between the Portuguese and Spanish governments, but it is open to the general public and scientific community, both within and beyond the Iberian Peninsula. The project's name is a portmanteau of Iberia and the Latin word civis, meaning 'citizen'.

Contents

In April 2020, the volunteer computing platform was restarted by the Ibercivis Foundation and the Spanish National Research Council in order to screen existing drugs for antiviral activity against Severe acute respiratory syndrome coronavirus 2, the causative agent of the COVID-19 pandemic. [1]

History

Ibercivis was developed in Spain with the cooperation of the Institute of Biocomputation and Physics of Complex Systems at the University of Zaragoza, CIEMAT, CETA-CIEMAT, the Spanish National Research Council (CSIC) and RedIris. The project tasks are issued by different scientific and technological centers in Spain with the aim of creating a functional platform for volunteer-based scientific computing. The project is a European counterpart to the successful United States-based SETI@home and Berkeley Open Infrastructure for Network Computing (BOINC) volunteer computing projects.

Ibercivis' predecessor, the University of Zaragoza-based volunteer computing project Zivis, began operation in 2007, and Ibercivis itself started operating in June 2008. The Zivis project was a local volunteer computing application funded by the ayuntamiento (city council) of the city of Zaragoza. The larger-scale Ibercivis infrastructure has been used for a variety of calculating applications, including nuclear fusion research, protein folding and materials simulations. In July 2009, the Ibercivis platform was extended to Portugal following an agreement signed by the governments of both countries during the Luso-Spanish Summit held in Zamora, Spain, in January 2009. Several Portuguese institutions subsequently affiliated themselves with Ibercivis, including the Ministry of Science, the Centre for Neuroscience and Cell Biology at the University of Coimbra, and the LIP experimental high-energy physics laboratory.

In April 2020, a new Ibercivis project was launched to support researchers efforts to fight Coronavirus disease 2019.

Number of participants

At its inception in June 2008, Ibercivis had 3,000 registered users hosting its various projects. By December 2012, this figure had risen to over 19,800, distributed across 124 countries. [2] There were around 55,000 individual hosting devices registered with the project, of which over 3,600 were active on a weekly basis. [2]

As of April 2020, there were 917 active users and 2375 active hosts in the new inception of Ibercivis. [3]

Projects

Ibercivis was intended to run indefinitely, and is designed to run several simultaneous applications belonging to different scientific disciplines in a manner similar to World Community Grid. Users can select which projects they wish to contribute to via the project's website. [4] As of May 2020, Ibercivis encompassed eight different active projects: [5]

Active Projects

COVID-Phym: Screen existing drugs for antiviral activity against Severe acute respiratory syndrome coronavirus 2, the causative agent of the COVID-19 pandemic. [6]

Completed projects

Ibercivis projects that have been completed or discontinued as of May 2020 include: [7]

See also

Related Research Articles

<span class="mw-page-title-main">Supercomputer</span> Type of extremely powerful computer

A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instructions per second (MIPS). Since 2017, there have existed supercomputers which can perform over 1017 FLOPS (a hundred quadrillion FLOPS, 100 petaFLOPS or 100 PFLOPS).

Grid computing is the use of widely distributed computer resources to reach a common goal. A computing grid can be thought of as a distributed system with non-interactive workloads that involve many files. Grid computing is distinguished from conventional high-performance computing systems such as cluster computing in that grid computers have each node set to perform a different task/application. Grid computers also tend to be more heterogeneous and geographically dispersed than cluster computers. Although a single grid can be dedicated to a particular application, commonly a grid is used for a variety of purposes. Grids are often constructed with general-purpose grid middleware software libraries. Grid sizes can be quite large.

<span class="mw-page-title-main">SETI@home</span> BOINC based volunteer computing project searching for signs of extraterrestrial intelligence

SETI@home is a project of the Berkeley SETI Research Center to analyze radio signals, searching for signs of extraterrestrial intelligence. Until March 2020, it was run as an Internet-based public volunteer computing project that employed the BOINC software platform. It is hosted by the Space Sciences Laboratory at the University of California, Berkeley, and is one of many activities undertaken as part of the worldwide SETI effort.

<span class="mw-page-title-main">Berkeley Open Infrastructure for Network Computing</span> Open source middleware system for volunteer and grid computing

The Berkeley Open Infrastructure for Network Computing is an open-source middleware system for volunteer computing. Developed originally to support SETI@home, it became the platform for many other applications in areas as diverse as medicine, molecular biology, mathematics, linguistics, climatology, environmental science, and astrophysics, among others. The purpose of BOINC is to enable researchers to utilize processing resources of personal computers and other devices around the world.

<span class="mw-page-title-main">Folding@home</span> Volunteer computing project simulating protein folding

Folding@home is a volunteer computing project aimed to help scientists develop new therapeutics for a variety of diseases by the means of simulating protein dynamics. This includes the process of protein folding and the movements of proteins, and is reliant on simulations run on volunteers' personal computers. Folding@home is currently based at the University of Pennsylvania and led by Greg Bowman, a former student of Vijay Pande.

<span class="mw-page-title-main">World Community Grid</span> BOINC based volunteer computing project to aid scientific research

World Community Grid (WCG) is an effort to create the world's largest volunteer computing platform to tackle scientific research that benefits humanity. Launched on November 16, 2004, with proprietary Grid MP client from United Devices and adding support for Berkeley Open Infrastructure for Network Computing (BOINC) in 2005, World Community Grid eventually discontinued the Grid MP client and consolidated on the BOINC platform in 2008. In September 2021, it was announced that IBM transferred ownership to the Krembil Research Institute of University Health Network in Toronto, Ontario.

<span class="mw-page-title-main">LHC@home</span> Volunteer computing project researching particle simulations for LHC development

LHC@home is a volunteer computing project researching particle physics that uses the Berkeley Open Infrastructure for Network Computing (BOINC) platform. The project's computing power is utilized by physicists at CERN in support of the Large Hadron Collider and other experimental particle accelerators.

<span class="mw-page-title-main">BOINC Credit System</span> Tracking of CPU time donated to BOINC projects

Within the BOINC platform for volunteer computing, the BOINC Credit System helps volunteers keep track of how much CPU time they have donated to various projects. This ensures users are returning accurate results for both scientific and statistical reasons.

SZTAKI Desktop Grid (SzDG) was a BOINC project located in Hungary run by the Computer and Automation Research Institute (SZTAKI) of the Hungarian Academy of Sciences. It closed on June 21, 2018.

The Institute for Biocomputation and Physics of Complex Systems (BIFI) is a research center of the University of Zaragoza devoted to the study of complex systems from a multidisciplinary perspective. Biochemists, physicists, mathematicians, computer scientists and researchers from other fields study complex systems, as well as different phenomena and processes related to them. The ultimate goal is to unravel various aspects of complexity, promote basic science and assess the impact of applied research and possible benefits for society.

<span class="mw-page-title-main">Volunteer computing</span> System where users donate computer resources to contribute to research

Volunteer computing is a type of distributed computing in which people donate their computers' unused resources to a research-oriented project, and sometimes in exchange for credit points. The fundamental idea behind it is that a modern desktop computer is sufficiently powerful to perform billions of operations a second, but for most users only between 10-15% of its capacity is used. Typical uses like basic word processing or web browsing leave the computer mostly idle.

<span class="mw-page-title-main">Cosmology@Home</span> BOINC based volunteer computing project galaxy simulation

Cosmology@Home is a volunteer computing project that uses the BOINC platform and was once run at the Departments of Astronomy and Physics at the University of Illinois at Urbana-Champaign. The project has moved to the Institut Lagrange de Paris and the Institut d'Astrophysique de Paris, both of which are located in the Pierre and Marie Curie University.

<span class="mw-page-title-main">AQUA@home</span> BOINC based volunteer computing project researching quantum computing

AQUA@home was a volunteer computing project operated by D-Wave Systems that ran on the Berkeley Open Infrastructure for Network Computing (BOINC) software platform. It ceased functioning in August 2011. Its goal was to predict the performance of superconducting adiabatic quantum computers on a variety of problems arising in fields ranging from materials science to machine learning. It designed and analyzed quantum computing algorithms, using Quantum Monte Carlo techniques.

<span class="mw-page-title-main">GPUGRID.net</span> BOINC based volunteer computing project researching molecular biology simulations

GPUGRID is a volunteer computing project hosted by Pompeu Fabra University and running on the Berkeley Open Infrastructure for Network Computing (BOINC) software platform. It performs full-atom molecular biology simulations that are designed to run on Nvidia's CUDA-compatible graphics processing units.

eOn BOINC based volunteer computing project

eOn was a volunteer computing project running on the Berkeley Open Infrastructure for Network Computing (BOINC) platform, which uses theoretical chemistry techniques to solve problems in condensed matter physics and materials science. It was a project of the Institute for Computational Engineering and Sciences at the University of Texas.

<span class="mw-page-title-main">SLinCA@Home</span> BOINC based volunteer computing project researching LHC development

SLinCA@Home was a research project that uses Internet-connected computers to do research in fields such as physics and materials science.

<span class="mw-page-title-main">OProject@Home</span> BOINC based volunteer computing project

OProject@Home was a volunteer computing project running on the Berkeley Open Infrastructure for Network Computing (BOINC) and was based on a dedicated library OLib. The project was directed by Lukasz Swierczewski, an IT student at the College of Computer Science and Business Administration in Łomża, Computer Science and Automation Institute. As of 2016 it seems to have been abandoned.

<span class="mw-page-title-main">DENIS@Home</span> BOINC based volunteer computing project

DENIS@home is a volunteer computing project hosted by Universidad San Jorge (Zaragoza,Spain) and running on the Berkeley Open Infrastructure for Network Computing (BOINC) software platform.

<span class="mw-page-title-main">Science and technology in Spain</span>

Science and technology in Spain relates to the set of policies, plans and programs carried out by the Spanish Ministry of Science and Innovation and other organizations aimed at research, development and innovation (R&D&I), as well as the reinforcement Spanish scientific and technological infrastructures and facilities such as universities and commercial laboratories. Spain has become the ninth scientific power in the world with 2.5% of the total number of scientific publications, thus surpassing Russia in the world ranking of scientific production and surpassing Switzerland and Australia in scientific quality.

Sofía Calero Diaz is a Spanish chemist who is a professor and Vice Dean of the Department of Applied Physics at the Eindhoven University of Technology. Her research considers computational modelling of functional materials for applications in renewable energy. She was awarded the Spanish Royal Society of Chemistry Award for Scientific Excellence in 2018.

References

  1. "Ibercivis BOINC". Ibercivis. 2020-05-16. Archived from the original on 2020-05-13. Retrieved 2020-05-16.
  2. 1 2 de Zutter, W. (19 April 2013). "Ibercivis: Credit overview". BoincStats.com. Archived from the original on 6 January 2012. Retrieved 19 April 2013.
  3. "Ibercivis BOINC - Server Status". Ibercivis BOINC. 2020-05-16. Archived from the original on 2020-06-30. Retrieved 2020-05-16.
  4. "Faqs". Ibercivis.es. Archived from the original on 2011-07-20. Retrieved 2011-02-20.
  5. Ibercivis.pt - Projects Archived 2012-04-25 at the Wayback Machine . Retrieved 2011-10-15.
  6. "PROYECTO COVID-PHYM". Ibercivis. Archived from the original on 2020-06-30. Retrieved 2020-05-16.
  7. Ibercivis.pt - Previous Projects. Archived 2012-04-25 at the Wayback Machine Retrieved 2011-10-15.
  8. AMILOIDE, The Movie — Inception Style Trailer Archived 2016-04-18 at the Wayback Machine , youtube.com
  9. Ibercivis.pt - Criticalidad. Archived 2012-04-25 at the Wayback Machine Retrieved 2011-10-15.
  10. Ibercivis.pt - Soluvel. Archived 2011-07-26 at the Wayback Machine Retrieved 2011-10-15.
  11. Ibercivis.pt - Primalidad Archived 2012-04-25 at the Wayback Machine . Retrieved 2011-10-15.