Leiden Classical

Last updated
Leiden Classical
Leiden.gif
Leiden Classical graphics
Operating system cross-platform
Platform BOINC
Website boinc.gorlaeus.net

Leiden Classical [1] was a volunteer computing project run by the Theoretical Chemistry Department of the Leiden Institute of Chemistry at Leiden University. Leiden Classical used the BOINC system, and enabled scientists or science students to submit their own test simulations of various molecules and atoms in a classical mechanics environment. ClassicalDynamics is a program (and with it a library) completely written in C++. The library is covered by the LGPL license and the main program is covered by the GPL. [2] The project shut down on June 5, 2018. [3]

Contents

Joining the project

Participation was possible via the BOINC manager. Using this software one was once able to create an account in the project. Then someone can make a model of a dynamic system and simulation participating run. There are several models possible, to interactions between molecules or planets.

User Submitted Calculations

To create a personal calculation, a user's model had to have six defined variables:

  1. Colors of the molecules
  2. Box in which the model is run
  3. Number of particles in the simulation
  4. Interaction between the particles
    1. Gravity
    2. Coulomb force
    3. Lennard-Jones interaction
    4. Morse interaction
    5. Rydberg interaction
    6. Harmonic spirit
    7. Harmonic bending
    8. Recurrent torsion interactions
  5. Distance conditions
  6. Confirmation parameter(s)

See also

Related Research Articles

Computational chemistry is a branch of chemistry that uses computer simulation to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated into computer programs, to calculate the structures and properties of molecules, groups of molecules, and solids. It is essential because, apart from relatively recent results concerning the hydrogen molecular ion, the quantum many-body problem cannot be solved analytically, much less in closed form. While computational results normally complement the information obtained by chemical experiments, it can in some cases predict hitherto unobserved chemical phenomena. It is widely used in the design of new drugs and materials.

Grid computing is the use of widely distributed computer resources to reach a common goal. A computing grid can be thought of as a distributed system with non-interactive workloads that involve many files. Grid computing is distinguished from conventional high-performance computing systems such as cluster computing in that grid computers have each node set to perform a different task/application. Grid computers also tend to be more heterogeneous and geographically dispersed than cluster computers. Although a single grid can be dedicated to a particular application, commonly a grid is used for a variety of purposes. Grids are often constructed with general-purpose grid middleware software libraries. Grid sizes can be quite large.

<span class="mw-page-title-main">Molecular dynamics</span> Computer simulations to discover and understand chemical properties

Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of the system. In the most common version, the trajectories of atoms and molecules are determined by numerically solving Newton's equations of motion for a system of interacting particles, where forces between the particles and their potential energies are often calculated using interatomic potentials or molecular mechanical force fields. The method is applied mostly in chemical physics, materials science, and biophysics.

Chemistry at Harvard Macromolecular Mechanics (CHARMM) is the name of a widely used set of force fields for molecular dynamics, and the name for the molecular dynamics simulation and analysis computer software package associated with them. The CHARMM Development Project involves a worldwide network of developers working with Martin Karplus and his group at Harvard to develop and maintain the CHARMM program. Licenses for this software are available, for a fee, to people and groups working in academia.

<span class="mw-page-title-main">Berkeley Open Infrastructure for Network Computing</span> Open source middleware system for volunteer and grid computing

The Berkeley Open Infrastructure for Network Computing is an open-source middleware system for volunteer computing. Developed originally to support SETI@home, it became the platform for many other applications in areas as diverse as medicine, molecular biology, mathematics, linguistics, climatology, environmental science, and astrophysics, among others. The purpose of BOINC is to enable researchers to utilize processing resources of personal computers and other devices around the world.

<span class="mw-page-title-main">Molecular mechanics</span> Use of classical mechanics to model molecular systems

Molecular mechanics uses classical mechanics to model molecular systems. The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using force fields. Molecular mechanics can be used to study molecule systems ranging in size and complexity from small to large biological systems or material assemblies with many thousands to millions of atoms.

grid.org was a website and online community established in 2001 for cluster computing and grid computing software users. For six years it operated several different volunteer computing projects that allowed members to donate their spare computer cycles to worthwhile causes. In 2007, it became a community for open source cluster and grid computing software. After around 2010 it redirected to other sites.

<span class="mw-page-title-main">World Community Grid</span> BOINC based volunteer computing project to aid scientific research

World Community Grid (WCG) is an effort to create the world's largest volunteer computing platform to tackle scientific research that benefits humanity. Launched on November 16, 2004, with proprietary Grid MP client from United Devices and adding support for Berkeley Open Infrastructure for Network Computing (BOINC) in 2005, World Community Grid eventually discontinued the Grid MP client and consolidated on the BOINC platform in 2008. In September 2021, it was announced that IBM transferred ownership to the Krembil Research Institute of University Health Network in Toronto, Ontario.

<span class="mw-page-title-main">LHC@home</span> Volunteer computing project researching particle simulations for LHC development

LHC@home is a volunteer computing project researching particle physics that uses the Berkeley Open Infrastructure for Network Computing (BOINC) platform. The project's computing power is utilized by physicists at CERN in support of the Large Hadron Collider and other experimental particle accelerators.

<span class="mw-page-title-main">BOINC Credit System</span> Tracking of CPU time donated to BOINC projects

Within the BOINC platform for volunteer computing, the BOINC Credit System helps volunteers keep track of how much CPU time they have donated to various projects. This ensures users are returning accurate results for both scientific and statistical reasons.

<span class="mw-page-title-main">Rosetta@home</span> BOINC based volunteer computing project researching protein folding

Rosetta@home is a volunteer computing project researching protein structure prediction on the Berkeley Open Infrastructure for Network Computing (BOINC) platform, run by the Baker lab. Rosetta@home aims to predict protein–protein docking and design new proteins with the help of about fifty-five thousand active volunteered computers processing at over 487,946 GigaFLOPS on average as of September 19, 2020. Foldit, a Rosetta@home videogame, aims to reach these goals with a crowdsourcing approach. Though much of the project is oriented toward basic research to improve the accuracy and robustness of proteomics methods, Rosetta@home also does applied research on malaria, Alzheimer's disease, and other pathologies.

<span class="mw-page-title-main">Spinhenge@Home</span> BOINC based volunteer computing project Spinhenge@Home

Spinhenge@home was a volunteer computing project on the BOINC platform, which performs extensive numerical simulations concerning the physical characteristics of magnetic molecules. It is a project of the Bielefeld University of Applied Sciences, Department of Electrical Engineering and Computer Science, in cooperation with the University of Osnabrück and Ames Laboratory.

<span class="mw-page-title-main">Volunteer computing</span> System where users donate computer resources to contribute to research

Volunteer computing is a type of distributed computing in which people donate their computers' unused resources to a research-oriented project, and sometimes in exchange for credit points. The fundamental idea behind it is that a modern desktop computer is sufficiently powerful to perform billions of operations a second, but for most users only between 10–15% of its capacity is used. Common tasks such as word processing or web browsing leave the computer mostly idle.

proteins@home BOINC based volunteer computing project

proteins@home was a volunteer computing project that used the BOINC architecture. The project was run by the Department of Biology at École Polytechnique. The project began on December 28, 2006 and ended in June 2008.

<span class="mw-page-title-main">Cosmology@Home</span> BOINC based volunteer computing project galaxy simulation

Cosmology@Home is a volunteer computing project that uses the BOINC platform and was once run at the Departments of Astronomy and Physics at the University of Illinois at Urbana-Champaign. The project has moved to the Institut Lagrange de Paris and the Institut d'Astrophysique de Paris, both of which are located in the Pierre and Marie Curie University.

<span class="mw-page-title-main">MindModeling@Home</span> BOINC based volunteer computing project researching cognitive science

MindModeling@Home is an inactive non-profit, volunteer computing research project for the advancement of cognitive science. MindModeling@Home is hosted by Wright State University and the University of Dayton in Dayton, Ohio.

<span class="mw-page-title-main">Ibercivis</span> BOINC based volunteer computing project

Ibercivis was a volunteer computing platform which allows internet users to participate in scientific research by donating unused computer cycles to run scientific simulations and other tasks. The original project, which became operational in 2008, was a scientific collaboration between the Portuguese and Spanish governments, but it is open to the general public and scientific community, both within and beyond the Iberian Peninsula. The project's name is a portmanteau of Iberia and the Latin word civis, meaning 'citizen'.

<span class="mw-page-title-main">Molecular modeling on GPUs</span> Using graphics processing units for molecular simulations

Molecular modeling on GPU is the technique of using a graphics processing unit (GPU) for molecular simulations.

eOn BOINC based volunteer computing project

eOn was a volunteer computing project running on the Berkeley Open Infrastructure for Network Computing (BOINC) platform, which uses theoretical chemistry techniques to solve problems in condensed matter physics and materials science. It was a project of the Institute for Computational Engineering and Sciences at the University of Texas.

<span class="mw-page-title-main">Malaria Control Project</span> BOINC based volunteer computing project

malariacontrol.net was a volunteer computing project to simulate the transmission dynamics and health effects of malaria. It was part of the Africa@home project.

References

  1. Wijzenbroek, M.; Somers, M. F. (2012-08-07). "Static surface temperature effects on the dissociation of H2 and D2 on Cu(111)". The Journal of Chemical Physics. 137 (5): 054703. Bibcode:2012JChPh.137e4703W. doi:10.1063/1.4738956. ISSN   0021-9606. PMID   22894367. Archived from the original on 2022-08-19. Retrieved 2022-08-19.
  2. "Archived copy". Archived from the original on 2018-06-19. Retrieved 2014-02-28.{{cite web}}: CS1 maint: archived copy as title (link)
  3. "Archived copy". Archived from the original on 2010-10-06. Retrieved 2009-02-10.{{cite web}}: CS1 maint: archived copy as title (link)