Morse potential

Last updated

The Morse potential, named after physicist Philip M. Morse, is a convenient interatomic interaction model for the potential energy of a diatomic molecule. It is a better approximation for the vibrational structure of the molecule than the quantum harmonic oscillator because it explicitly includes the effects of bond breaking, such as the existence of unbound states. It also accounts for the anharmonicity of real bonds and the non-zero transition probability for overtone and combination bands. The Morse potential can also be used to model other interactions such as the interaction between an atom and a surface. Due to its simplicity (only three fitting parameters), it is not used in modern spectroscopy. However, its mathematical form inspired the MLR (Morse/Long-range) potential, which is the most popular potential energy function used for fitting spectroscopic data.

Contents

Potential energy function

The Morse potential (blue) and harmonic oscillator potential (green). Unlike the energy levels of the harmonic oscillator potential, which are evenly spaced by ho, the Morse potential level spacing decreases as the energy approaches the dissociation energy. The dissociation energy De is larger than the true energy required for dissociation D0 due to the zero point energy of the lowest (v = 0) vibrational level. Morse-potential.svg
The Morse potential (blue) and harmonic oscillator potential (green). Unlike the energy levels of the harmonic oscillator potential, which are evenly spaced by ħω, the Morse potential level spacing decreases as the energy approaches the dissociation energy. The dissociation energy De is larger than the true energy required for dissociation D0 due to the zero point energy of the lowest (v = 0) vibrational level.

The Morse potential energy function is of the form

Here is the distance between the atoms, is the equilibrium bond distance, is the well depth (defined relative to the dissociated atoms), and controls the 'width' of the potential (the smaller is, the larger the well). The dissociation energy of the bond can be calculated by subtracting the zero point energy from the depth of the well. The force constant (stiffness) of the bond can be found by Taylor expansion of around to the second derivative of the potential energy function, from which it can be shown that the parameter, , is

where is the force constant at the minimum of the well.

Since the zero of potential energy is arbitrary, the equation for the Morse potential can be rewritten any number of ways by adding or subtracting a constant value. When it is used to model the atom-surface interaction, the energy zero can be redefined so that the Morse potential becomes

which is usually written as

where is now the coordinate perpendicular to the surface. This form approaches zero at infinite and equals at its minimum, i.e. . It clearly shows that the Morse potential is the combination of a short-range repulsion term (the former) and a long-range attractive term (the latter), analogous to the Lennard-Jones potential.

Vibrational states and energies

Like the quantum harmonic oscillator, the energies and eigenstates of the Morse potential can be found using operator methods. [1] One approach involves applying the factorization method to the Hamiltonian.

To write the stationary states on the Morse potential, i.e. solutions and of the following Schrödinger equation:

it is convenient to introduce the new variables:

Then, the Schrödinger equation takes the simplified form:

Its eigenvalues (reduced by ) and eigenstates can be written as: [2]

where

with denoting the largest integer smaller than and

where and which satisfies the normalization condition

and where is a generalized Laguerre polynomial:

There also exists the following analytical expression for matrix elements of the coordinate operator: [3]

which is valid for and

The eigenenergies in the initial variables have the form:

where is the vibrational quantum number and has units of frequency. The latter is mathematically related to the particle mass, and the Morse constants via

Whereas the energy spacing between vibrational levels in the quantum harmonic oscillator is constant at the energy between adjacent levels decreases with increasing in the Morse oscillator. Mathematically, the spacing of Morse levels is

This trend matches the inharmonicity found in real molecules. However, this equation fails above some value of where is calculated to be zero or negative. Specifically,

(integer part only).

This failure is due to the finite number of bound levels in the Morse potential, and some maximum that remains bound. For energies above all the possible energy levels are allowed and the equation for is no longer valid.

Below is a good approximation for the true vibrational structure in non-rotating diatomic molecules. In fact, the real molecular spectra are generally fit to the form1

in which the constants and can be directly related to the parameters for the Morse potential. Specifically,

and

Note that if and are given in is in cm/s (not m/s), is in kg, and is in J·s  ; in which case will be in and will be in

As is clear from dimensional analysis, for historical reasons the last equation uses spectroscopic notation in which represents a wavenumber obeying and not an angular frequency given by

Harmonic oscillator (grey) and Morse (black) potentials curves are shown along with their eigenfunctions (respectively green and blue for harmonic oscillator and morse) for the same vibrational levels for nitrogen. N2ground.png
Harmonic oscillator (grey) and Morse (black) potentials curves are shown along with their eigenfunctions (respectively green and blue for harmonic oscillator and morse) for the same vibrational levels for nitrogen.

Morse/Long-range potential

An extension of the Morse potential that made the Morse form useful for modern (high-resolution) spectroscopy is the MLR (Morse/Long-range) potential. [4] The MLR potential is used as a standard for representing spectroscopic and/or virial data of diatomic molecules by a potential energy curve. It has been used on N2, [5] Ca2, [6] KLi, [7] MgH, [8] [9] [10] several electronic states of Li2, [4] [11] [12] [13] [9] Cs2, [14] [15] Sr2, [16] ArXe, [9] [17] LiCa, [18] LiNa, [19] Br2, [20] Mg2, [21] HF, [22] [23] HCl, [22] [23] HBr, [22] [23] HI, [22] [23] MgD, [8] Be2, [24] BeH, [25] and NaH. [26] More sophisticated versions are used for polyatomic molecules.

See also

Related Research Articles

<span class="mw-page-title-main">Gravitational redshift</span> Shift of wavelength of a photon to longer wavelength

In physics and general relativity, gravitational redshift is the phenomenon that electromagnetic waves or photons travelling out of a gravitational well lose energy. This loss of energy corresponds to a decrease in the wave frequency and increase in the wavelength, known more generally as a redshift. The opposite effect, in which photons gain energy when travelling into a gravitational well, is known as a gravitational blueshift. The effect was first described by Einstein in 1907, eight years before his publication of the full theory of relativity.

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

<span class="mw-page-title-main">Zero-point energy</span> Lowest possible energy of a quantum system or field

Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty principle. Therefore, even at absolute zero, atoms and molecules retain some vibrational motion. Apart from atoms and molecules, the empty space of the vacuum also has these properties. According to quantum field theory, the universe can be thought of not as isolated particles but continuous fluctuating fields: matter fields, whose quanta are fermions, and force fields, whose quanta are bosons. All these fields have zero-point energy. These fluctuating zero-point fields lead to a kind of reintroduction of an aether in physics since some systems can detect the existence of this energy. However, this aether cannot be thought of as a physical medium if it is to be Lorentz invariant such that there is no contradiction with Einstein's theory of special relativity.

In theoretical physics, the renormalization group (RG) is a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle.

The Ising model, named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent magnetic dipole moments of atomic "spins" that can be in one of two states. The spins are arranged in a graph, usually a lattice, allowing each spin to interact with its neighbors. Neighboring spins that agree have a lower energy than those that disagree; the system tends to the lowest energy but heat disturbs this tendency, thus creating the possibility of different structural phases. The model allows the identification of phase transitions as a simplified model of reality. The two-dimensional square-lattice Ising model is one of the simplest statistical models to show a phase transition.

A bound state is a composite of two or more fundamental building blocks, such as particles, atoms, or bodies, that behaves as a single object and in which energy is required to split them.

<span class="mw-page-title-main">Nonlinear Schrödinger equation</span> Nonlinear form of the Schrödinger equation

In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic, cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.

The Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon whose energy is the same as the rest energy of that particle. It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons.

In probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all of its entries are sampled randomly from a probability distribution. Random matrix theory (RMT) is the study of properties of random matrices, often as they become large. RMT provides techniques like mean-field theory, diagrammatic methods, the cavity method, or the replica method to compute quantities like traces, spectral densities, or scalar products between eigenvectors. Many physical phenomena, such as the spectrum of nuclei of heavy atoms, the thermal conductivity of a lattice, or the emergence of quantum chaos, can be modeled mathematically as problems concerning large, random matrices.

In quantum mechanics, the Hellmann–Feynman theorem relates the derivative of the total energy with respect to a parameter to the expectation value of the derivative of the Hamiltonian with respect to that same parameter. According to the theorem, once the spatial distribution of the electrons has been determined by solving the Schrödinger equation, all the forces in the system can be calculated using classical electrostatics.

Micromagnetics is a field of physics dealing with the prediction of magnetic behaviors at sub-micrometer length scales. The length scales considered are large enough for the atomic structure of the material to be ignored, yet small enough to resolve magnetic structures such as domain walls or vortices.

The quantum Heisenberg model, developed by Werner Heisenberg, is a statistical mechanical model used in the study of critical points and phase transitions of magnetic systems, in which the spins of the magnetic systems are treated quantum mechanically. It is related to the prototypical Ising model, where at each site of a lattice, a spin represents a microscopic magnetic dipole to which the magnetic moment is either up or down. Except the coupling between magnetic dipole moments, there is also a multipolar version of Heisenberg model called the multipolar exchange interaction.

The Koide formula is an unexplained empirical equation discovered by Yoshio Koide in 1981. In its original form, it is not fully empirical but a set of guesses for a model for masses of quarks and leptons, as well as CKM angles. From this model it survives the observation about the masses of the three charged leptons; later authors have extended the relation to neutrinos, quarks, and other families of particles.

<span class="mw-page-title-main">Cnoidal wave</span> Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

In physics, Liouville field theory is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation.

<span class="mw-page-title-main">Morse/Long-range potential</span> Model of the potential energy of a diatomic molecule

The Morse/Long-range potential (MLR potential) is an interatomic interaction model for the potential energy of a diatomic molecule. Due to the simplicity of the regular Morse potential (it only has three adjustable parameters), it is very limited in its applicability in modern spectroscopy. The MLR potential is a modern version of the Morse potential which has the correct theoretical long-range form of the potential naturally built into it. It has been an important tool for spectroscopists to represent experimental data, verify measurements, and make predictions. It is useful for its extrapolation capability when data for certain regions of the potential are missing, its ability to predict energies with accuracy often better than the most sophisticated ab initio techniques, and its ability to determine precise empirical values for physical parameters such as the dissociation energy, equilibrium bond length, and long-range constants. Cases of particular note include:

  1. the c-state of dilithium (Li2): where the MLR potential was successfully able to bridge a gap of more than 5000 cm−1 in experimental data. Two years later it was found that the MLR potential was able to successfully predict the energies in the middle of this gap, correctly within about 1 cm−1. The accuracy of these predictions was much better than the most sophisticated ab initio techniques at the time.
  2. the A-state of Li2: where Le Roy et al. constructed an MLR potential which determined the C3 value for atomic lithium to a higher-precision than any previously measured atomic oscillator strength, by an order of magnitude. This lithium oscillator strength is related to the radiative lifetime of atomic lithium and is used as a benchmark for atomic clocks and measurements of fundamental constants.
  3. the a-state of KLi: where the MLR was used to build an analytic global potential successfully despite there only being a small amount of levels observed near the top of the potential.

Bimetric gravity or bigravity refers to two different classes of theories. The first class of theories relies on modified mathematical theories of gravity in which two metric tensors are used instead of one. The second metric may be introduced at high energies, with the implication that the speed of light could be energy-dependent, enabling models with a variable speed of light.

In quantum mechanics, weak measurement is a type of quantum measurement that results in an observer obtaining very little information about the system on average, but also disturbs the state very little. From Busch's theorem any quantum system is necessarily disturbed by measurement, but the amount of disturbance is described by a parameter called the measurement strength.

The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information. It is one of the central quantities used to qualify the utility of an input state, especially in Mach–Zehnder interferometer-based phase or parameter estimation. It is shown that the quantum Fisher information can also be a sensitive probe of a quantum phase transition. The quantum Fisher information of a state with respect to the observable is defined as

Tau functions are an important ingredient in the modern mathematical theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.

References

  1. Cooper, F.; Khare, A.; Sukhatme, U. (2001). Supersymmetry in Quantum Mechanics. World Scientific. Table 4.1.
  2. Dahl, J.P.; Springborg, M. (1988). "The Morse oscillator in position space, momentum space, and phase space" (PDF). The Journal of Chemical Physics. 88 (7): 4535. Bibcode:1988JChPh..88.4535D. doi:10.1063/1.453761. S2CID   97262147 via dtu.dk.
  3. de Lima, Emanuel F.; Hornos, José E.M. (2005). "Matrix elements for the Morse potential under an external field". Journal of Physics B. 38 (7): 815–825. Bibcode:2005JPhB...38..815D. doi:10.1088/0953-4075/38/7/004. S2CID   119976840.
  4. 1 2 Le Roy, Robert J.; N. S. Dattani; J. A. Coxon; A. J. Ross; Patrick Crozet; C. Linton (25 November 2009). "Accurate analytic potentials for Li2(X) and Li2(A) from 2 to 90 Angstroms, and the radiative lifetime of Li(2p)". Journal of Chemical Physics. 131 (20): 204309. Bibcode:2009JChPh.131t4309L. doi:10.1063/1.3264688. PMID   19947682.
  5. Le Roy, R. J.; Y. Huang; C. Jary (2006). "An accurate analytic potential function for ground-state N2 from a direct-potential-fit analysis of spectroscopic data". Journal of Chemical Physics. 125 (16): 164310. Bibcode:2006JChPh.125p4310L. doi:10.1063/1.2354502. PMID   17092076. S2CID   32249407.
  6. Le Roy, Robert J.; R. D. E. Henderson (2007). "A new potential function form incorporating extended long-range behaviour: application to ground-state Ca2". Molecular Physics. 105 (5–7): 663–677. Bibcode:2007MolPh.105..663L. doi:10.1080/00268970701241656. S2CID   94174485.
  7. Salami, H.; A. J. Ross; P. Crozet; W. Jastrzebski; P. Kowalczyk; R. J. Le Roy (2007). "A full analytic potential energy curve for the a3Σ+ state of KLi from a limited vibrational data set". Journal of Chemical Physics. 126 (19): 194313. Bibcode:2007JChPh.126s4313S. doi: 10.1063/1.2734973 . PMID   17523810. S2CID   26105905.
  8. 1 2 Henderson, R. D. E.; A. Shayesteh; J. Tao; C. Haugen; P. F. Bernath; R. J. Le Roy (4 October 2013). "Accurate Analytic Potential and Born–Oppenheimer Breakdown Functions for MgH and MgD from a Direct-Potential-Fit Data Analysis". The Journal of Physical Chemistry A. 117 (50): 13373–87. Bibcode:2013JPCA..11713373H. doi:10.1021/jp406680r. PMID   24093511. S2CID   23016118.
  9. 1 2 3 Le Roy, R. J.; C. C. Haugen; J. Tao; H. Li (February 2011). "Long-range damping functions improve the short-range behaviour of 'MLR' potential energy functions" (PDF). Molecular Physics. 109 (3): 435–446. Bibcode:2011MolPh.109..435L. doi:10.1080/00268976.2010.527304. S2CID   97119318. Archived from the original (PDF) on 2019-01-08. Retrieved 2013-11-30.
  10. Shayesteh, A.; R. D. E. Henderson; R. J. Le Roy; P. F. Bernath (2007). "Ground State Potential Energy Curve and Dissociation Energy of MgH". The Journal of Physical Chemistry A. 111 (49): 12495–12505. Bibcode:2007JPCA..11112495S. CiteSeerX   10.1.1.584.8808 . doi:10.1021/jp075704a. PMID   18020428.
  11. Dattani, N. S.; R. J. Le Roy (8 May 2013). "A DPF data analysis yields accurate analytic potentials for Li2(a) and Li2(c) that incorporate 3-state mixing near the c-state asymptote". Journal of Molecular Spectroscopy. 268 (1–2): 199–210. arXiv: 1101.1361 . Bibcode:2011JMoSp.268..199D. doi:10.1016/j.jms.2011.03.030. S2CID   119266866.
  12. Gunton, Will; Semczuk, Mariusz; Dattani, Nikesh S.; Madison, Kirk W. (2013). "High-resolution photoassociation spectroscopy of the 6Li2A(11Σ+
    u
    ) state". Physical Review A. 88 (6): 062510. arXiv: 1309.5870 . Bibcode:2013PhRvA..88f2510G. doi:10.1103/PhysRevA.88.062510. S2CID   119268157.
  13. Semczuk, M.; Li, X.; Gunton, W.; Haw, M.; Dattani, N. S.; Witz, J.; Mills, A. K.; Jones, D. J.; Madison, K. W. (2013). "High-resolution photoassociation spectroscopy of the 6Li2 c-state". Phys. Rev. A. 87 (5): 052505. arXiv: 1309.6662 . Bibcode:2013PhRvA..87e2505S. doi:10.1103/PhysRevA.87.052505. S2CID   119263860.
  14. Xie, F.; L. Li; D. Li; V. B. Sovkov; K. V. Minaev; V. S. Ivanov; A. M. Lyyra; S. Magnier (2011). "Joint analysis of the Cs2 a-state and 1 g (33Π1g ) states". Journal of Chemical Physics. 135 (2): 02403. Bibcode:2011JChPh.135b4303X. doi:10.1063/1.3606397. PMID   21766938.
  15. Coxon, J. A.; P. G. Hajigeorgiou (2010). "The ground X 1Σ+g electronic state of the cesium dimer: Application of a direct potential fitting procedure". Journal of Chemical Physics. 132 (9): 094105. Bibcode:2010JChPh.132i4105C. doi:10.1063/1.3319739. PMID   20210387.
  16. Stein, A.; H. Knockel; E. Tiemann (April 2010). "The 1S+1S asymptote of Sr2 studied by Fourier-transform spectroscopy". The European Physical Journal D. 57 (2): 171–177. arXiv: 1001.2741 . Bibcode:2010EPJD...57..171S. doi:10.1140/epjd/e2010-00058-y. S2CID   119243162.
  17. Piticco, Lorena; F. Merkt; A. A. Cholewinski; F. R. W. McCourt; R. J. Le Roy (December 2010). "Rovibrational structure and potential energy function of the ground electronic state of ArXe". Journal of Molecular Spectroscopy. 264 (2): 83–93. Bibcode:2010JMoSp.264...83P. doi:10.1016/j.jms.2010.08.007. hdl: 20.500.11850/210096 .
  18. Ivanova, Milena; A. Stein; A. Pashov; A. V. Stolyarov; H. Knockel; E. Tiemann (2011). "The X2Σ+ state of LiCa studied by Fourier-transform spectroscopy". Journal of Chemical Physics. 135 (17): 174303. Bibcode:2011JChPh.135q4303I. doi:10.1063/1.3652755. PMID   22070298.
  19. Steinke, M.; H. Knockel; E. Tiemann (27 April 2012). "X-state of LiNa studied by Fourier-transform spectroscopy". Physical Review A. 85 (4): 042720. Bibcode:2012PhRvA..85d2720S. doi:10.1103/PhysRevA.85.042720.
  20. Yukiya, T.; N. Nishimiya; Y. Samejima; K. Yamaguchi; M. Suzuki; C. D. Boonec; I. Ozier; R. J. Le Roy (January 2013). "Direct-potential-fit analysis for the system of Br2". Journal of Molecular Spectroscopy. 283: 32–43. Bibcode:2013JMoSp.283...32Y. doi:10.1016/j.jms.2012.12.006.
  21. Knockel, H.; S. Ruhmann; E. Tiemann (2013). "The X-state of Mg2 studied by Fourier-transform spectroscopy". Journal of Chemical Physics. 138 (9): 094303. Bibcode:2013JChPh.138i4303K. doi:10.1063/1.4792725. PMID   23485290.
  22. 1 2 3 4 Li, Gang; I. E. Gordon; P. G. Hajigeorgiou; J. A. Coxon; L. S. Rothman (July 2013). "Reference spectroscopic data for hydrogen halides, Part II:The line lists". Journal of Quantitative Spectroscopy & Radiative Transfer. 130: 284–295. Bibcode:2013JQSRT.130..284L. doi:10.1016/j.jqsrt.2013.07.019.
  23. 1 2 3 4 Coxon, John A.; Hajigeorgiou, Photos G. (2015). "Improved direct potential fit analyses for the ground electronic states of the hydrogen halides: HF/DF/TF, HCl/DCl/TCl, HBr/DBr/TBr and HI/DI/TI". Journal of Quantitative Spectroscopy and Radiative Transfer. 151: 133–154. Bibcode:2015JQSRT.151..133C. doi:10.1016/j.jqsrt.2014.08.028.
  24. Meshkov, Vladimir V.; Stolyarov, Andrey V.; Heaven, Michael C.; Haugen, Carl; Leroy, Robert J. (2014). "Direct-potential-fit analyses yield improved empirical potentials for the ground XΣg+1 state of Be2". The Journal of Chemical Physics. 140 (6): 064315. Bibcode:2014JChPh.140f4315M. doi:10.1063/1.4864355. PMID   24527923.
  25. Dattani, Nikesh S. (2015). "Beryllium monohydride (BeH): Where we are now, after 86 years of spectroscopy". Journal of Molecular Spectroscopy. 311: 76–83. arXiv: 1408.3301 . Bibcode:2015JMoSp.311...76D. doi:10.1016/j.jms.2014.09.005. S2CID   118542048.
  26. Walji, Sadru-Dean; Sentjens, Katherine M.; Le Roy, Robert J. (2015). "Dissociation energies and potential energy functions for the ground X 1Σ+ and "avoided-crossing" A 1Σ+ states of NaH". The Journal of Chemical Physics. 142 (4): 044305. Bibcode:2015JChPh.142d4305W. doi:10.1063/1.4906086. PMID   25637985. S2CID   2481313.