Morse potential

Last updated

The Morse potential, named after physicist Philip M. Morse, is a convenient interatomic interaction model for the potential energy of a diatomic molecule. It is a better approximation for the vibrational structure of the molecule than the quantum harmonic oscillator because it explicitly includes the effects of bond breaking, such as the existence of unbound states. It also accounts for the anharmonicity of real bonds and the non-zero transition probability for overtone and combination bands. The Morse potential can also be used to model other interactions such as the interaction between an atom and a surface. Due to its simplicity (only three fitting parameters), it is not used in modern spectroscopy. However, its mathematical form inspired the MLR (Morse/Long-range) potential, which is the most popular potential energy function used for fitting spectroscopic data.

Contents

Potential energy function

The Morse potential (blue) and harmonic oscillator potential (green). Unlike the energy levels of the harmonic oscillator potential, which are evenly spaced by ho, the Morse potential level spacing decreases as the energy approaches the dissociation energy. The dissociation energy De is larger than the true energy required for dissociation D0 due to the zero point energy of the lowest (v = 0) vibrational level. Morse-potential.png
The Morse potential (blue) and harmonic oscillator potential (green). Unlike the energy levels of the harmonic oscillator potential, which are evenly spaced by ħω, the Morse potential level spacing decreases as the energy approaches the dissociation energy. The dissociation energy De is larger than the true energy required for dissociation D0 due to the zero point energy of the lowest (v = 0) vibrational level.

The Morse potential energy function is of the form

Here is the distance between the atoms, is the equilibrium bond distance, is the well depth (defined relative to the dissociated atoms), and controls the 'width' of the potential (the smaller is, the larger the well). The dissociation energy of the bond can be calculated by subtracting the zero point energy from the depth of the well. The force constant (stiffness) of the bond can be found by Taylor expansion of around to the second derivative of the potential energy function, from which it can be shown that the parameter, , is

where is the force constant at the minimum of the well.

Since the zero of potential energy is arbitrary, the equation for the Morse potential can be rewritten any number of ways by adding or subtracting a constant value. When it is used to model the atom-surface interaction, the energy zero can be redefined so that the Morse potential becomes

which is usually written as

where is now the coordinate perpendicular to the surface. This form approaches zero at infinite and equals at its minimum, i.e. . It clearly shows that the Morse potential is the combination of a short-range repulsion term (the former) and a long-range attractive term (the latter), analogous to the Lennard-Jones potential.

Vibrational states and energies

Like the quantum harmonic oscillator, the energies and eigenstates of the Morse potential can be found using operator methods. [1] One approach involves applying the factorization method to the Hamiltonian.

To write the stationary states on the Morse potential, i.e. solutions and of the following Schrödinger equation:

it is convenient to introduce the new variables:

Then, the Schrödinger equation takes the simple form:

Its eigenvalues (reduced by ) and eigenstates can be written as: [2]

where

with denoting the largest integer smaller than , and

where (which satisfies the normalization condition ) and is a generalized Laguerre polynomial:

There also exists the following analytical expression for matrix elements of the coordinate operator: [3]

which is valid for and . The eigenenergies in the initial variables have the form:

where is the vibrational quantum number and has units of frequency. The latter is mathematically related to the particle mass, , and the Morse constants via

Whereas the energy spacing between vibrational levels in the quantum harmonic oscillator is constant at , the energy between adjacent levels decreases with increasing in the Morse oscillator. Mathematically, the spacing of Morse levels is

This trend matches the anharmonicity found in real molecules. However, this equation fails above some value of where is calculated to be zero or negative. Specifically,

integer part.

This failure is due to the finite number of bound levels in the Morse potential, and some maximum that remains bound. For energies above , all the possible energy levels are allowed and the equation for is no longer valid.

Below , is a good approximation for the true vibrational structure in non-rotating diatomic molecules. In fact, the real molecular spectra are generally fit to the form1

in which the constants and can be directly related to the parameters for the Morse potential.

As is clear from dimensional analysis, for historical reasons the last equation uses spectroscopic notation in which represents a wavenumber obeying , and not an angular frequency given by .

Harmonic oscillator (grey) and Morse (black) potentials curves are shown along with their eigenfunctions (respectively green and blue for harmonic oscillator and morse) for the same vibrational levels for nitrogen. N2ground.png
Harmonic oscillator (grey) and Morse (black) potentials curves are shown along with their eigenfunctions (respectively green and blue for harmonic oscillator and morse) for the same vibrational levels for nitrogen.

Morse/Long-range potential

An extension of the Morse potential that made the Morse form useful for modern (high-resolution) spectroscopy is the MLR (Morse/Long-range) potential. [4] The MLR potential is used as a standard for representing spectroscopic and/or virial data of diatomic molecules by a potential energy curve. It has been used on N2, [5] Ca2, [6] KLi, [7] MgH, [8] [9] [10] several electronic states of Li2, [4] [11] [12] [13] [9] Cs2, [14] [15] Sr2, [16] ArXe, [9] [17] LiCa, [18] LiNa, [19] Br2, [20] Mg2, [21] HF, [22] [23] HCl, [22] [23] HBr, [22] [23] HI, [22] [23] MgD, [8] Be2, [24] BeH, [25] and NaH. [26] More sophisticated versions are used for polyatomic molecules.

See also

Related Research Articles

<span class="mw-page-title-main">Bose–Einstein condensate</span> State of matter

In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero. Under such conditions, a large fraction of bosons occupy the lowest quantum state, at which microscopic quantum mechanical phenomena, particularly wavefunction interference, become apparent macroscopically.

<span class="mw-page-title-main">Scanning tunneling microscope</span> Instrument able to image surfaces at the atomic level by exploiting quantum tunneling effects

A scanning tunneling microscope (STM) is a type of microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1986. STM senses the surface by using an extremely sharp conducting tip that can distinguish features smaller than 0.1 nm with a 0.01 nm (10 pm) depth resolution. This means that individual atoms can routinely be imaged and manipulated. Most scanning tunneling microscopes are built for use in ultra-high vacuum at temperatures approaching absolute zero, but variants exist for studies in air, water and other environments, and for temperatures over 1000 °C.

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle.

A bound state is a composite of two or more fundamental building blocks, such as particles, atoms, or bodies, that behaves as a single object and in which energy is required to split them.

In quantum mechanics, a rotational transition is an abrupt change in angular momentum. Like all other properties of a quantum particle, angular momentum is quantized, meaning it can only equal certain discrete values, which correspond to different rotational energy states. When a particle loses angular momentum, it is said to have transitioned to a lower rotational energy state. Likewise, when a particle gains angular momentum, a positive rotational transition is said to have occurred.

The Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon whose energy is the same as the rest energy of that particle. It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons.

In probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all elements are random variables. Many important properties of physical systems can be represented mathematically as matrix problems. For example, the thermal conductivity of a lattice can be computed from the dynamical matrix of the particle-particle interactions within the lattice.

Møller–Plesset perturbation theory (MP) is one of several quantum chemistry post-Hartree–Fock ab initio methods in the field of computational chemistry. It improves on the Hartree–Fock method by adding electron correlation effects by means of Rayleigh–Schrödinger perturbation theory (RS-PT), usually to second (MP2), third (MP3) or fourth (MP4) order. Its main idea was published as early as 1934 by Christian Møller and Milton S. Plesset.

In quantum mechanics, the Hellmann–Feynman theorem relates the derivative of the total energy with respect to a parameter to the expectation value of the derivative of the Hamiltonian with respect to that same parameter. According to the theorem, once the spatial distribution of the electrons has been determined by solving the Schrödinger equation, all the forces in the system can be calculated using classical electrostatics.

<span class="mw-page-title-main">Jaynes–Cummings model</span> Model in quantum optics

The Jaynes–Cummings model is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.

In quantum mechanics the delta potential is a potential well mathematically described by the Dirac delta function - a generalized function. Qualitatively, it corresponds to a potential which is zero everywhere, except at a single point, where it takes an infinite value. This can be used to simulate situations where a particle is free to move in two regions of space with a barrier between the two regions. For example, an electron can move almost freely in a conducting material, but if two conducting surfaces are put close together, the interface between them acts as a barrier for the electron that can be approximated by a delta potential.

The Gross–Pitaevskii equation describes the ground state of a quantum system of identical bosons using the Hartree–Fock approximation and the pseudopotential interaction model.

The Gamow factor, Sommerfeld factor or Gamow–Sommerfeld factor, named after its discoverer George Gamow or after Arnold Sommerfeld, is a probability factor for two nuclear particles' chance of overcoming the Coulomb barrier in order to undergo nuclear reactions, for example in nuclear fusion. By classical physics, there is almost no possibility for protons to fuse by crossing each other's Coulomb barrier at temperatures commonly observed to cause fusion, such as those found in the sun. When George Gamow instead applied quantum mechanics to the problem, he found that there was a significant chance for the fusion due to tunneling.

The Ghirardi–Rimini–Weber theory (GRW) is a spontaneous collapse theory in quantum mechanics, proposed in 1986 by Giancarlo Ghirardi, Alberto Rimini, and Tullio Weber.

In mathematical physics, a Pöschl–Teller potential, named after the physicists Herta Pöschl and Edward Teller, is a special class of potentials for which the one-dimensional Schrödinger equation can be solved in terms of special functions.

The Koopman–von Neumann (KvN) theory is a description of classical mechanics as an operatorial theory similar to quantum mechanics, based on a Hilbert space of complex, square-integrable wavefunctions. As its name suggests, the KvN theory is loosely related to work by Bernard Koopman and John von Neumann in 1931 and 1932, respectively. As explained in this entry, however, the historical origins of the theory and its name are complicated.

<span class="mw-page-title-main">Morse/Long-range potential</span> Model of the potential energy of a diatomic molecule

The Morse/Long-range potential (MLR potential) is an interatomic interaction model for the potential energy of a diatomic molecule. Due to the simplicity of the regular Morse potential (it only has three adjustable parameters), it is very limited in its applicability in modern spectroscopy. The MLR potential is a modern version of the Morse potential which has the correct theoretical long-range form of the potential naturally built into it. It has been an important tool for spectroscopists to represent experimental data, verify measurements, and make predictions. It is useful for its extrapolation capability when data for certain regions of the potential are missing, its ability to predict energies with accuracy often better than the most sophisticated ab initio techniques, and its ability to determine precise empirical values for physical parameters such as the dissociation energy, equilibrium bond length, and long-range constants. Cases of particular note include:

  1. the c-state of dilithium (Li2): where the MLR potential was successfully able to bridge a gap of more than 5000 cm−1 in experimental data. Two years later it was found that the MLR potential was able to successfully predict the energies in the middle of this gap, correctly within about 1 cm−1. The accuracy of these predictions was much better than the most sophisticated ab initio techniques at the time.
  2. the A-state of Li2: where Le Roy et al. constructed an MLR potential which determined the C3 value for atomic lithium to a higher-precision than any previously measured atomic oscillator strength, by an order of magnitude. This lithium oscillator strength is related to the radiative lifetime of atomic lithium and is used as a benchmark for atomic clocks and measurements of fundamental constants.
  3. the a-state of KLi: where the MLR was used to build an analytic global potential successfully despite there only being a small amount of levels observed near the top of the potential.
<span class="mw-page-title-main">Light-front computational methods</span> Technique in computational quantum field theory

The light-front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is one Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others.

In quantum mechanics, weak measurements are a type of quantum measurement that results in an observer obtaining very little information about the system on average, but also disturbs the state very little. From Busch's theorem the system is necessarily disturbed by the measurement. In the literature weak measurements are also known as unsharp, fuzzy, dull, noisy, approximate, and gentle measurements. Additionally weak measurements are often confused with the distinct but related concept of the weak value.

References

  1. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechanics, World Scientific, 2001, Table 4.1
  2. Dahl, J.P.; Springborg, M. (1988). "The Morse Oscillator in Position Space, Momentum Space, and Phase Space" (PDF). The Journal of Chemical Physics. 88 (7): 4535. Bibcode:1988JChPh..88.4535D. doi:10.1063/1.453761. S2CID   97262147.
  3. Lima, Emanuel F de; Hornos, José E M. (2005). "Matrix elements for the Morse potential under an external field". Journal of Physics B. 38 (7): 815–825. Bibcode:2005JPhB...38..815D. doi:10.1088/0953-4075/38/7/004. S2CID   119976840.
  4. 1 2 Le Roy, Robert J.; N. S. Dattani; J. A. Coxon; A. J. Ross; Patrick Crozet; C. Linton (25 November 2009). "Accurate analytic potentials for Li2(X) and Li2(A) from 2 to 90 Angstroms, and the radiative lifetime of Li(2p)". Journal of Chemical Physics. 131 (20): 204309. Bibcode:2009JChPh.131t4309L. doi:10.1063/1.3264688. PMID   19947682.
  5. Le Roy, R. J.; Y. Huang; C. Jary (2006). "An accurate analytic potential function for ground-state N2 from a direct-potential-fit analysis of spectroscopic data". Journal of Chemical Physics. 125 (16): 164310. Bibcode:2006JChPh.125p4310L. doi:10.1063/1.2354502. PMID   17092076. S2CID   32249407.
  6. Le Roy, Robert J.; R. D. E. Henderson (2007). "A new potential function form incorporating extended long-range behaviour: application to ground-state Ca2". Molecular Physics. 105 (5–7): 663–677. Bibcode:2007MolPh.105..663L. doi:10.1080/00268970701241656. S2CID   94174485.
  7. Salami, H.; A. J. Ross; P. Crozet; W. Jastrzebski; P. Kowalczyk; R. J. Le Roy (2007). "A full analytic potential energy curve for the a3Σ+ state of KLi from a limited vibrational data set". Journal of Chemical Physics. 126 (19): 194313. Bibcode:2007JChPh.126s4313S. doi: 10.1063/1.2734973 . PMID   17523810. S2CID   26105905.
  8. 1 2 Henderson, R. D. E.; A. Shayesteh; J. Tao; C. Haugen; P. F. Bernath; R. J. Le Roy (4 October 2013). "Accurate Analytic Potential and Born–Oppenheimer Breakdown Functions for MgH and MgD from a Direct-Potential-Fit Data Analysis". The Journal of Physical Chemistry A. 117 (50): 13373–87. Bibcode:2013JPCA..11713373H. doi:10.1021/jp406680r. PMID   24093511. S2CID   23016118.
  9. 1 2 3 Le Roy, R. J.; C. C. Haugen; J. Tao; H. Li (February 2011). "Long-range damping functions improve the short-range behaviour of 'MLR' potential energy functions" (PDF). Molecular Physics. 109 (3): 435–446. Bibcode:2011MolPh.109..435L. doi:10.1080/00268976.2010.527304. S2CID   97119318. Archived from the original (PDF) on 2019-01-08. Retrieved 2013-11-30.
  10. Shayesteh, A.; R. D. E. Henderson; R. J. Le Roy; P. F. Bernath (2007). "Ground State Potential Energy Curve and Dissociation Energy of MgH". The Journal of Physical Chemistry A. 111 (49): 12495–12505. Bibcode:2007JPCA..11112495S. CiteSeerX   10.1.1.584.8808 . doi:10.1021/jp075704a. PMID   18020428.
  11. Dattani, N. S.; R. J. Le Roy (8 May 2013). "A DPF data analysis yields accurate analytic potentials for Li2(a) and Li2(c) that incorporate 3-state mixing near the c-state asymptote". Journal of Molecular Spectroscopy. 268 (1–2): 199–210. arXiv: 1101.1361 . Bibcode:2011JMoSp.268..199D. doi:10.1016/j.jms.2011.03.030. S2CID   119266866.
  12. Gunton, Will; Semczuk, Mariusz; Dattani, Nikesh S.; Madison, Kirk W. (2013). "High-resolution photoassociation spectroscopy of the 6Li2A(11Σ+
    u
    ) state". Physical Review A. 88 (6): 062510. arXiv: 1309.5870 . Bibcode:2013PhRvA..88f2510G. doi:10.1103/PhysRevA.88.062510. S2CID   119268157.
  13. Semczuk, M.; Li, X.; Gunton, W.; Haw, M.; Dattani, N. S.; Witz, J.; Mills, A. K.; Jones, D. J.; Madison, K. W. (2013). "High-resolution photoassociation spectroscopy of the 6Li2 c-state". Phys. Rev. A. 87 (5): 052505. arXiv: 1309.6662 . Bibcode:2013PhRvA..87e2505S. doi:10.1103/PhysRevA.87.052505. S2CID   119263860.
  14. Xie, F.; L. Li; D. Li; V. B. Sovkov; K. V. Minaev; V. S. Ivanov; A. M. Lyyra; S. Magnier (2011). "Joint analysis of the Cs2 a-state and 1 g (33Π1g ) states". Journal of Chemical Physics. 135 (2): 02403. Bibcode:2011JChPh.135b4303X. doi:10.1063/1.3606397. PMID   21766938.
  15. Coxon, J. A.; P. G. Hajigeorgiou (2010). "The ground X 1Σ+g electronic state of the cesium dimer: Application of a direct potential fitting procedure". Journal of Chemical Physics. 132 (9): 094105. Bibcode:2010JChPh.132i4105C. doi:10.1063/1.3319739. PMID   20210387.
  16. Stein, A.; H. Knockel; E. Tiemann (April 2010). "The 1S+1S asymptote of Sr2 studied by Fourier-transform spectroscopy". The European Physical Journal D. 57 (2): 171–177. arXiv: 1001.2741 . Bibcode:2010EPJD...57..171S. doi:10.1140/epjd/e2010-00058-y. S2CID   119243162.
  17. Piticco, Lorena; F. Merkt; A. A. Cholewinski; F. R. W. McCourt; R. J. Le Roy (December 2010). "Rovibrational structure and potential energy function of the ground electronic state of ArXe". Journal of Molecular Spectroscopy. 264 (2): 83–93. Bibcode:2010JMoSp.264...83P. doi:10.1016/j.jms.2010.08.007. hdl: 20.500.11850/210096 .
  18. Ivanova, Milena; A. Stein; A. Pashov; A. V. Stolyarov; H. Knockel; E. Tiemann (2011). "The X2Σ+ state of LiCa studied by Fourier-transform spectroscopy". Journal of Chemical Physics. 135 (17): 174303. Bibcode:2011JChPh.135q4303I. doi:10.1063/1.3652755. PMID   22070298.
  19. Steinke, M.; H. Knockel; E. Tiemann (27 April 2012). "X-state of LiNa studied by Fourier-transform spectroscopy". Physical Review A. 85 (4): 042720. Bibcode:2012PhRvA..85d2720S. doi:10.1103/PhysRevA.85.042720.
  20. Yukiya, T.; N. Nishimiya; Y. Samejima; K. Yamaguchi; M. Suzuki; C. D. Boonec; I. Ozier; R. J. Le Roy (January 2013). "Direct-potential-fit analysis for the system of Br2". Journal of Molecular Spectroscopy. 283: 32–43. Bibcode:2013JMoSp.283...32Y. doi:10.1016/j.jms.2012.12.006.
  21. Knockel, H.; S. Ruhmann; E. Tiemann (2013). "The X-state of Mg2 studied by Fourier-transform spectroscopy". Journal of Chemical Physics. 138 (9): 094303. Bibcode:2013JChPh.138i4303K. doi:10.1063/1.4792725. PMID   23485290.
  22. 1 2 3 4 Li, Gang; I. E. Gordon; P. G. Hajigeorgiou; J. A. Coxon; L. S. Rothman (July 2013). "Reference spectroscopic data for hydrogen halides, Part II:The line lists". Journal of Quantitative Spectroscopy & Radiative Transfer. 130: 284–295. Bibcode:2013JQSRT.130..284L. doi:10.1016/j.jqsrt.2013.07.019.
  23. 1 2 3 4 Coxon, John A.; Hajigeorgiou, Photos G. (2015). "Improved direct potential fit analyses for the ground electronic states of the hydrogen halides: HF/DF/TF, HCl/DCl/TCl, HBr/DBr/TBr and HI/DI/TI". Journal of Quantitative Spectroscopy and Radiative Transfer. 151: 133–154. Bibcode:2015JQSRT.151..133C. doi:10.1016/j.jqsrt.2014.08.028.
  24. Meshkov, Vladimir V.; Stolyarov, Andrey V.; Heaven, Michael C.; Haugen, Carl; Leroy, Robert J. (2014). "Direct-potential-fit analyses yield improved empirical potentials for the ground XΣg+1 state of Be2". The Journal of Chemical Physics. 140 (6): 064315. Bibcode:2014JChPh.140f4315M. doi:10.1063/1.4864355. PMID   24527923.
  25. Dattani, Nikesh S. (2015). "Beryllium monohydride (BeH): Where we are now, after 86 years of spectroscopy". Journal of Molecular Spectroscopy. 311: 76–83. arXiv: 1408.3301 . Bibcode:2015JMoSp.311...76D. doi:10.1016/j.jms.2014.09.005. S2CID   118542048.
  26. Walji, Sadru-Dean; Sentjens, Katherine M.; Le Roy, Robert J. (2015). "Dissociation energies and potential energy functions for the ground X 1Σ+ and "avoided-crossing" A 1Σ+ states of NaH". The Journal of Chemical Physics. 142 (4): 044305. Bibcode:2015JChPh.142d4305W. doi:10.1063/1.4906086. PMID   25637985. S2CID   2481313.