TheSkyNet

Last updated
theSkyNet
TheSkyNet Logo.png
TheSkyNet.png
Platform BOINC
Website www.theskynet.org

theSkyNet was a research project that used volunteer Internet-connected computers to carry out research in astronomy. It was an initiative of the International Centre for Radio Astronomy Research (ICRAR), a joint venture of Curtin University and the University of Western Australia. theSkyNet had two projects, Sourcefinder [1] and POGS. [2] Both projects have been completed. [3] [4] theSkyNet Sourcefinder aimed to test and refine automatic radio sourcefinding algorithms in preparation for radio galaxy surveys using the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array. theSkyNet POGS used Spectral Energy Distribution fitting to calculate characteristics of many galaxies using images taken by the Pan-STARRS PS1 optical telescope in Hawaii.

Contents

History

theSkyNet Sourcefinder project was introduced publicly on 13 September 2011, [5] operating on a Java-based user platform, processing data using new distributed computing software called Nereus.

One year later, theSkyNet celebrated its first birthday and at the same time theSkyNet POGS project became the first public Australian based project to participate in the well established volunteer computing platform BOINC. [6] The acronym POGS is a reference to a game played with discs that originated on Maui, Hawaii, in the 1920s, and the fact that the Pan-STARRS PS1 telescope, is situated on Mount Haleakala, Maui. [7] However, the project recast "POGS" as the backronym for "Pan-STARRS Optical Galaxy Survey". [8]

Scientific objectives

The aim of theSkyNet POGS project is to:

A mosaic of results from theSkyNet, a BOINC based volunteer computing project. The main image shows how fast stars are forming in 'nearby' galaxy Messier 100 (M100), white patches are hotbeds of new stars, purple areas are where fewer young stars are forming. Each sub image is results from the other 45,000+ galaxies theSkyNet volunteers have processed. The original data that theSkyNet volunteers processed to make these images is from the Pan-STARRS Optical Galaxy Survey, which is conducted by Pan-STARRS1, a powerful visible light telescope in Hawaii. Gigapixel mosaic of galaxy image results from theSkyNet distributed computer.png
A mosaic of results from theSkyNet, a BOINC based volunteer computing project. The main image shows how fast stars are forming in ‘nearby’ galaxy Messier 100 (M100), white patches are hotbeds of new stars, purple areas are where fewer young stars are forming. Each sub image is results from the other 45,000+ galaxies theSkyNet volunteers have processed. The original data that theSkyNet volunteers processed to make these images is from the Pan-STARRS Optical Galaxy Survey, which is conducted by Pan-STARRS1, a powerful visible light telescope in Hawaii.

The aim of theSkyNet Sourcefinder project is to:

Software

theSkyNet POGS volunteer computing software runs continuously in the background on a computer while a user works, making use of any processor time that would otherwise be unused. It is one of many projects which utilise the Berkeley Open Infrastructure for Network Computing (BOINC) Project Management software platform, which allows users to contribute to a range of volunteer computing projects at the same time.

After a volunteer downloads the BOINC Manager software and elects to join theSkyNet POGS project, work units are requested automatically by the BOINC Manager. These are downloaded and processed automatically on the user's computer, using a percentage of the computer's idle time, according to the parameters set by the volunteer.

On completion of a work unit, the results of the data processing are automatically transmitted back to theSkyNet via the Internet, the user is credited with the work done; and further work is requested.

theSkyNet Sourcefinder, before its closure in early 2014 to undergo redevelopment, used a Java-based custom software either via a browser or installed software. theSkyNet Sourcefinder was redeveloped to use BOINC and VirtualBox.

Hardware

The software runs on Windows, Unix/Linux, Macintosh and Android systems. Some discrepancies have been noted between the results created by Androids and those created by other devices. [10]

theSkyNet POGS project utilised CPUs but did not utilise the power of graphics processing units (GPUs).

Participation

The project is operated by ICRAR in Perth, Western Australia, under the team leadership of Associate Professor Kevin Vinsen. [11] On 13 October 2014, the project's server status page claimed 13,770 unpaid volunteer users worldwide with credit (5,268 with recent credit); and 40,847 computers with credit (16,508 with recent credit). [12]

Scientific results

An example of the data that is processed by theSkyNet POGS distributed computing project. Three different images of the same galaxy are shown, at Ultraviolet, Optical and Infrared wavelengths, taken by the GALEX, Pan-STARRS1 and WISE telescopes respectively. The far right image then shows the process used by theSkyNet POGS to determine different characteristics of the galaxy in question using the three images in a process called Spectral Energy Distribution (SED) fitting. Example data processed by theSkyNet POGS distributed computing project.png
An example of the data that is processed by theSkyNet POGS distributed computing project. Three different images of the same galaxy are shown, at Ultraviolet, Optical and Infrared wavelengths, taken by the GALEX, Pan-STARRS1 and WISE telescopes respectively. The far right image then shows the process used by theSkyNet POGS to determine different characteristics of the galaxy in question using the three images in a process called Spectral Energy Distribution (SED) fitting.

On 7 June 2013 a paper entitled "A BOINC based, citizen-science project for pixel Spectral Energy Distribution fitting of resolved galaxies in multi-wavelength surveys" was submitted for publication. [13] It was last revised on 3 October 2013.

On 23 September 2014, the project Team Leader announced that the project was about to process its 50,000th galaxy. [14]

Future projects

theSkyNet has stated that it may expand to include other projects processing data from new sources, such as the Murchison Widefield Array telescope in Western Australia and perhaps even the Square Kilometre Array. [15]

See also

Related Research Articles

Infrared astronomy is a sub-discipline of astronomy which specializes in the observation and analysis of astronomical objects using infrared (IR) radiation. The wavelength of infrared light ranges from 0.75 to 300 micrometers, and falls in between visible radiation, which ranges from 380 to 750 nanometers, and submillimeter waves.

<span class="mw-page-title-main">Photometry (astronomy)</span> Determination of light intensities of astronomical bodies

Photometry, from Greek photo- ("light") and -metry ("measure"), is a technique used in astronomy that is concerned with measuring the flux or intensity of light radiated by astronomical objects. This light is measured through a telescope using a photometer, often made using electronic devices such as a CCD photometer or a photoelectric photometer that converts light into an electric current by the photoelectric effect. When calibrated against standard stars of known intensity and colour, photometers can measure the brightness or apparent magnitude of celestial objects.

<span class="mw-page-title-main">Hubble Deep Field</span> Multiple exposure image of deep space in the constellation Ursa Major

The Hubble Deep Field (HDF) is an image of a small region in the constellation Ursa Major, constructed from a series of observations by the Hubble Space Telescope. It covers an area about 2.6 arcminutes on a side, about one 24-millionth of the whole sky, which is equivalent in angular size to a tennis ball at a distance of 100 metres. The image was assembled from 342 separate exposures taken with the Space Telescope's Wide Field and Planetary Camera 2 over ten consecutive days between December 18 and 28, 1995.

<span class="mw-page-title-main">SETI@home</span> BOINC based volunteer computing project searching for signs of extraterrestrial intelligence

SETI@home is a project of the Berkeley SETI Research Center to analyze radio signals, searching for signs of extraterrestrial intelligence. Until March 2020, it was run as an Internet-based public volunteer computing project that employed the BOINC software platform. It is hosted by the Space Sciences Laboratory at the University of California, Berkeley, and is one of many activities undertaken as part of the worldwide SETI effort.

<span class="mw-page-title-main">VISTA (telescope)</span>

The VISTA is a wide-field reflecting telescope with a 4.1 metre mirror, located at the Paranal Observatory in Chile. It is operated by the European Southern Observatory and started science operations in December 2009. VISTA was conceived and developed by a consortium of universities in the United Kingdom led by Queen Mary University of London and became an in-kind contribution to ESO as part of the UK's accession agreement, with the subscription paid by the UK Science and Technology Facilities Council (STFC).

The Sloan Digital Sky Survey or SDSS is a major multi-spectral imaging and spectroscopic redshift survey using a dedicated 2.5-m wide-angle optical telescope at Apache Point Observatory in New Mexico, United States. The project began in 2000 and was named after the Alfred P. Sloan Foundation, which contributed significant funding.

<span class="mw-page-title-main">James Clerk Maxwell Telescope</span> Radio telescope in Hawaii, US

The James Clerk Maxwell Telescope (JCMT) is a submillimetre-wavelength radio telescope at Mauna Kea Observatory in Hawaii, US. The telescope is near the summit of Mauna Kea at 13,425 feet (4,092 m). Its primary mirror is 15 metres across: it is the largest single-dish telescope that operates in submillimetre wavelengths of the electromagnetic spectrum. Scientists use it to study the Solar System, interstellar dust and gas, and distant galaxies.

<span class="mw-page-title-main">Westerbork Synthesis Radio Telescope</span> Aperture synthesis interferometer in the Netherlands

The Westerbork Synthesis Radio Telescope (WSRT) is an aperture synthesis interferometer built on the site of the former World War II Nazi detention and transit camp Westerbork, north of the village of Westerbork, Midden-Drenthe, in the northeastern Netherlands.

<span class="mw-page-title-main">Low-Frequency Array (LOFAR)</span> Radio telescope network located mainly in the Netherlands

The Low-Frequency Array, or LOFAR, is a large radio telescope, with an antenna network located mainly in the Netherlands, and spreading across 7 other European countries as of 2019. Originally designed and built by ASTRON, the Netherlands Institute for Radio Astronomy, it was first opened by queen Beatrix of The Netherlands in 2010, and has since been operated on behalf of the International LOFAR Telescope (ILT) partnership by ASTRON.

<span class="mw-page-title-main">NASA Infrared Telescope Facility</span>

The NASA Infrared Telescope Facility is a 3-meter (9.8 ft) telescope optimized for use in infrared astronomy and located at the Mauna Kea Observatory in Hawaii. It was first built to support the Voyager missions and is now the US national facility for infrared astronomy, providing continued support to planetary, solar neighborhood, and deep space applications. The IRTF is operated by the University of Hawaii under a cooperative agreement with NASA. According to the IRTF's time allocation rules, at least 50% of the observing time is devoted to planetary science.

<span class="mw-page-title-main">Allen Telescope Array</span> Radio telescope array

The Allen Telescope Array (ATA), formerly known as the One Hectare Telescope (1hT), is a radio telescope array dedicated to astronomical observations and a simultaneous search for extraterrestrial intelligence (SETI). The array is situated at the Hat Creek Radio Observatory in Shasta County, 290 miles (470 km) northeast of San Francisco, California.

<span class="mw-page-title-main">Submillimetre astronomy</span> Astronomy with terahertz (< 1 mm)-range light

Submillimetre astronomy or submillimeter astronomy is the branch of observational astronomy that is conducted at submillimetre wavelengths of the electromagnetic spectrum. Astronomers place the submillimetre waveband between the far-infrared and microwave wavebands, typically taken to be between a few hundred micrometres and a millimetre. It is still common in submillimetre astronomy to quote wavelengths in 'microns', the old name for micrometre.

<span class="mw-page-title-main">SkyMapper</span>

SkyMapper is a fully automated 1.35 m (4.4 ft) wide-angle optical telescope at Siding Spring Observatory in northern New South Wales, Australia. It is one of the telescopes of the Research School of Astronomy and Astrophysics of the Australian National University (ANU). The telescope has a compact modified Cassegrain design with a large 0.69 m secondary mirror, which gives it a very wide field of view: its single, dedicated instrument, a 268-million pixel imaging camera, can photograph 5.7 square degrees of sky. The camera has six light filters which span from ultraviolet to near infrared wavelengths.

<span class="mw-page-title-main">Pan-STARRS</span> Multi-telescope astronomical survey

The Panoramic Survey Telescope and Rapid Response System located at Haleakala Observatory, Hawaii, US, consists of astronomical cameras, telescopes and a computing facility that is surveying the sky for moving or variable objects on a continual basis, and also producing accurate astrometry and photometry of already-detected objects. In January 2019 the second Pan-STARRS data release was announced. At 1.6 petabytes, it is the largest volume of astronomical data ever released.

<span class="mw-page-title-main">Astropulse</span>

Astropulse is a volunteer computing project to search for primordial black holes, pulsars, and extraterrestrial intelligence (ETI). Volunteer resources are harnessed through Berkeley Open Infrastructure for Network Computing (BOINC) platform. In 1999, the Space Sciences Laboratory launched SETI@home, which would rely on massively parallel computation on desktop computers scattered around the world. SETI@home utilizes recorded data from the Arecibo radio telescope and searches for narrow-bandwidth radio signals from space, signifying the presence of extraterrestrial technology. It was soon recognized that this same data might be scoured for other signals of value to the astronomy and physics community.

Two instruments known as the Submillimetre Common-User Bolometer Array, or SCUBA, have been used for detecting submillimetre radiation on the James Clerk Maxwell Telescope in Hawaii.

An integral field spectrograph, or a spectrograph equipped with an integral field unit (IFU), is an optical instrument combining spectrographic and imaging capabilities, used to obtain spatially resolved spectra in astronomy and other fields of research such as bio-medical science and Earth observation.

<span class="mw-page-title-main">Australian Square Kilometre Array Pathfinder</span> 36 radio telescopes in Murchison Observstory

The Australian Square Kilometre Array Pathfinder (ASKAP) is a radio telescope array located at Murchison Radio-astronomy Observatory (MRO) in the Mid West region of Western Australia. It is operated by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and forms part of the Australia Telescope National Facility. Construction commenced in late 2009 and first light was in October 2012.

The International Centre for Radio Astronomy Research (ICRAR) is an international "centre of excellence" in astronomical science and technology based in Perth, Western Australia, launched in August 2009 as a joint venture between Curtin University and the University of Western Australia. The ICRAR attracts researchers in radio astronomy, contributing to Australian and international scientific and technical programs for the international Square Kilometre Array (SKA) project, the world's biggest ground-based telescope array which is in its design phase and the two Australian SKA precursors, the Australian Square Kilometre Array Pathfinder (ASKAP) and the Murchison Widefield Array (MWA), both located in Murchison. The headquarters of the ICRAR is located in Crawley.

References

  1. "Sourcefinder". 2018-02-05. Archived from the original on 2018-02-05. Retrieved 2022-08-30.
  2. "theSkyNet POGS - the PS1 Optical Galaxy Survey". 2013-07-25. Archived from the original on 2013-07-25. Retrieved 2022-08-30.
  3. "POGS is complete!". 2018-05-02. Archived from the original on 2018-05-02. Retrieved 2018-05-02.
  4. "Sourcefinder shutting down". 2018-05-08. Archived from the original on 2018-05-09. Retrieved 2018-05-09.
  5. International Centre for Radio Astronomy Research (September 14, 2011). "Discovering the hidden universe: TheSkyNet Launched". ScienceDaily. Archived from the original on January 14, 2016. Retrieved March 9, 2018.
  6. Day, John (13 September 2012). "Rise of the machines as theSkyNet turns one". Government of Western Australia. Archived from the original on 2014-10-19. Retrieved 2014-10-14.
  7. "TheSkyNet". Archived from the original on 2014-10-10. Retrieved 2014-10-14.
  8. "TheSkyNet". Archived from the original on 2014-10-19. Retrieved 2014-10-14.
  9. "PhotoMosaic of Messier 100 made with images from theSkyNet.org". www.gigapan.com. Archived from the original on 2022-08-29. Retrieved 2022-08-29.
  10. Vinsen, Kevin; Thilker, David (2013). "A BOINC based, citizen-science project for pixel Spectral Energy Distribution fitting of resolved galaxies in multi-wavelength surveys". Astronomy and Computing. 3: 1. arXiv: 1306.1618 . Bibcode:2013A&C.....3....1V. doi:10.1016/j.ascom.2013.10.001. S2CID   18810116. (sections 3 & 9)
  11. "TheSkyNet". Archived from the original on 2014-10-19. Retrieved 2014-10-14.
  12. "TheSkyNet". Archived from the original on 2014-10-06. Retrieved 2014-10-14.
  13. Vinsen, Kevin; Thilker, David (2013). "A BOINC based, citizen-science project for pixel Spectral Energy Distribution fitting of resolved galaxies in multi-wavelength surveys". Astronomy and Computing. 3: 1–12. arXiv: 1306.1618 . Bibcode:2013A&C.....3....1V. doi:10.1016/j.ascom.2013.10.001. S2CID   18810116.
  14. "TheSkyNet". Archived from the original on 2014-10-10. Retrieved 2014-10-14.
  15. "TheSkyNet: History of theSkyNet". Archived from the original on 2014-10-19. Retrieved 2014-10-14.