Designer | Hewlett-Packard |
---|---|
Bits | Hybrid 64-bit GPR, 20-bit address bus, 4-bit datapath, 4-bit minimum word size |
Introduced | 1984 |
Version | "Level 2" |
Design | CISC |
Type | Combination of a load–store architecture with some exceptions which fall into the register–memory architecture family |
Encoding | Variable |
Branching | Carry bit, "sticky" bit and other flag registers |
Endianness | Little-endian |
Page size | No MMU or paging available |
Extensions | Only extensions for emulated ARM-based "virtual" CPUs |
Open | Proprietary |
Predecessor | Nut |
Registers | |
Nine 64-bit GPR and "scratch" registers, two 20-bit "data pointer" registers and other miscellaneous registers | |
General-purpose | Four 64-bit GPRs |
Floating point | No FPU registers |
Vector | No vector registers |
The Saturn family of 4-bit (datapath) microprocessors was developed by Hewlett-Packard in the 1980s first for the HP-71B handheld computer, released in 1984, and later for various HP calculators (starting with the HP-18C). It succeeded the Nut family of processors used in earlier calculators. The HP48SX and HP48S were the last models to use HP manufactured Saturn processors, later models used processors manufactured by NEC. The HP 49 series initially used the Saturn CPU until the NEC fab [nb 1] could no longer manufacture the processor for technical reasons in 2003. Starting with the HP 49g+ model in 2003, the calculators switched to a Samsung S3C2410 processor with an ARM920T core (part of the ARMv4T architecture) which ran an emulator of the Saturn hardware in software. In 2000, the HP 39G and HP 40G were the last calculators introduced based on the actual NEC fabricated Saturn hardware. The last calculators introduced to use the Saturn emulator were the HP 39gs, HP 40gs and HP 50g in 2006, as well as the 2007 revision of the hp 48gII. The HP 50g was the last calculator sold by HP using this emulator when it was discontinued in 2015 due to Samsung stopping production of the ARM processor on which it was based. [1] [2] [3]
The Saturn hardware is a nibble serial design [4] as opposed to its Nut predecessor, which was bit-serial. [5] Internally, the Saturn CPU has four 4-bit data buses that allow for nearly 1-cycle per nibble performance with one or two buses acting as a source and one or two acting as a destination. [4] The smallest addressable word is a 4-bit nibble which can hold one binary-coded decimal (BCD) digit. Any unit of data in the registers larger than a nibble, up to 64-bits, can be operated on as a whole, however the Saturn CPU performs the operation serially on a nibble-by-nibble basis internally. [4]
The Saturn architecture has an internal register width of 64 bits and 20-bits of address, with memory being addressed to 4-bit (nibble) granularity. Saturn ALU instructions support variable data width, operating on one to 16 nibbles of a word. The original Saturn CPU chips provided a four-bit external data bus, but later Saturn-based SoCs included on chip bus conversion to an 8-bit external data bus and 19-bit external address bus.
The Saturn architecture has four 64-bit GPRs (General Purpose Registers), named A, B, C and D. In addition, there are also five 64-bit "scratch" registers named R0, R1, R2, R3 and R4. These can only store data. If an ALU operation is required for data in a scratch register, then the register in question must be transferred to a GPR first. Other registers include a 1-nibble "pointer" register named P, usually used to select a nibble in a GPR or a range of nibbles (or for aligning immediate data on a specific nibble in a GPR, with wrap-around). For memory access, there are two 20-bit data pointer registers named D0 and D1. The Saturn architecture also has a PC or program counter register which can interoperate with the GPRs. There is also an 8-level, circular, LIFO 20-bit hardware return stack named RSTK used when a subroutine call instruction is issued. Additionally, the Saturn CPU is equipped with a 16-bit software status register named ST and a 1-nibble hardware status register named HS, which notably, contains the SB or "sticky bit" flag indicating whether a binary 1 was right shifted off of a GPR. Furthermore, the Saturn architecture has a 12-bit OUT register and a 16-bit IN register, which in the Yorke and Clarke SoCs, are used to capture input from the keyboard and also control the beeper. There is also a 1-bit carry flag register.
In addition to the above, the Saturn CPU has a simple, non-prioritized interrupt system. When an interrupt occurs, the CPU finishes executing the current instruction, saves the program counter to the hardware return stack (RSTK) and jumps to address 0x0000Fh, where the preceding value is in nibbles. [4] The CPU also interacts with the keyboard scanning logic directly.
The following diagram depicts the registers (with each white square being 4-bits / a nibble except for the Carry flag, which is 1 bit):
Saturn 64-bit GPR register format and fields:
Bits | 63–60 | 59–56 | 55–52 | 51–48 | 47–44 | 43–40 | 39–36 | 35–32 | 31–28 | 27–24 | 23–20 | 19–16 | 15–12 | 11–8 | 7–4 | 3–0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nibble | F | E | D | C | B | A | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |
Fields | XS | B | |||||||||||||||
A | |||||||||||||||||
S | M | X | |||||||||||||||
W | |||||||||||||||||
P=0 | P | ||||||||||||||||
P=7 | WP |
Data in the general purpose registers can be accessed via fields that fall on nibble boundaries, whereas the scratch registers allow only load and store operations. The fields, as shown in the above diagram, are W (whole 64-bit GPR), A (address, first 5 nibbles of a GPR), S (sign of mantissa, most significant nibble of a GPR), XS (exponent sign, nibble 2 of a GPR), M (mantissa, nibbles 3–14 of a GPR), X (exponent, first 3 nibbles of a GPR) and B (first byte of a GPR). In addition, there is the P field which selects a nibble from a GPR based on the P register's 4-bit value. Also, there is the WP field which selects nibbles 0 through the nibble selected in the P register. The 64 bits (16 nibbles) can hold BCD-formatted coded floating point numbers composed of a sign nibble (which is "9" if the number is negative), 12 mantissa digits and a 3-digit 10's complement exponent stored in BCD format (±499). [6] The internal representation of BCD floating point values are a 15-digit mantissa with one sign nibble in one register combined with a 20-bit exponent, in 10's complement format, in another register. The use of BCD instead of straight binary representation is advantageous for calculators as it avoids rounding problems that occur on the binary/decimal conversion.
The Saturn CPU's instruction and data addresses are also nibble-based. The three pointer registers (including the program counter) and address registers are 20 bits wide. Due to this, the Saturn architecture can address 1 M nibbles or, equivalently, 512 K bytes. Beyond that size (e.g. in the 48GX), bank switching is used.
The original HP-71B handheld computer and the HP-28C had the Saturn processor as a separate chip. In the HP 48S/SX, 48G/GX series and HP-28S, HP-27S, HP-42S, HP-32SII and HP-20S, the Saturn CPU core is integrated as part of a more complex integrated circuit (IC) SoC.
The following is an integer implementation of a BCD decimal square root algorithm in Saturn Jazz / HP Tools assembly syntax:
** In the following A.W is assumed to contain the argument (< 1E14). ** The result (IP(SQRT(A.W))) is in C.W: SETDEC ASL W C=A W A=A+A W A=A+A W A=A+C W ASR W C=0 W P= 13 LC(1) 5 - CSR WP C=C-1 P -- C=C+1 P A=A-C W GONC -- A=A+C W CSR W P=P-1 P=P-1 GONC - SETHEX A=C W
The original Saturn CPU gave its name to the entire instruction set architecture. Later chips had their own code names:
ISA level | Processor code-name | Used in calculator models | Properties |
---|---|---|---|
0 [7] [8] | Saturn (1LF2) | HP-44A, HP-71B (1984) | |
1 [7] [8] | Saturn (1LK7) | HP-18C (1986), HP-28C (1987), HP-71B | 640 kHz, more instructions |
2 [7] [8] | Bert [9] (1LU7) [9] | HP-10B (1988), HP-20S (1988), HP-21S | 640 kHz, 10 KB ROM, 256 bytes RAM, LCD driver |
2 [7] [8] | Sacajawea [9] (1LR3) | HP-14B, HP-22S, HP-32S (1988), HP-32S+, HP-32SII (1991) | 640 kHz, 16 KB ROM, 512 bytes RAM, LCD driver |
2 [7] [8] | Lewis [9] (1LR2) | HP-17B (1988), HP 17BII (1990), HP-19B (1988), HP 19BII (1990), HP-27S (1988), HP-28S (1988), HP-42S (1988) | 1 MHz, 64 KB ROM, LCD driver, memory controller, IR control, 3 V CMOS |
2 [7] [8] | Clarke [9] (1LT8) [9] | HP 48SX (1990), HP 48S (1991) | 2 MHz, LCD controller, memory controller, UART and IR control, more instructions |
2 [7] [8] | Yorke [9] 00048-80063 [10] | HP 38G (1995), HP 38G+ (1998), HP 39G (2000), HP 40G (2000), HP 48GX (1993), HP 48G (1993), [nb 1] HP 48G+ (1998), HP 49G (1999) | 3.68–4 MHz, LCD controller, memory controller, UART and IR control, manufactured by NEC, more instructions, sometimes also known as Saturn 5 platform |
? | New-Yorke | HP 48GX prototype | 8 MHz, LCD controller, memory controller, UART and IR control. This was only made as an internal HP prototype and never released in the wild. [11] [12] |
2 [7] [8] [nb 2] | Apple series (Big Apple, [9] Mid Apple, [9] Little Apple) | hp 39g+ (2003), HP 39gs (2006), HP 40gs (2006), hp 49g+ (2003), hp 48gII (2003/2007), HP 50g (2006) | Virtual version of the Yorke CPU emulated by members of the 48/75 MHz Samsung S3C2410 processor family with ARM920T core (of the ARMv4T architecture) aka Saturn+ with additional virtual instructions |
The CPU code-names are inspired by members of the Lewis and Clark Expedition of 1804–1806, the first United States overland expedition to the Pacific coast and back. The virtual CPU / emulator code names were inspired by the prototype "New-Yorke" Saturn-based 8 MHz SoC that never made it to production. [12] According to one of the ACO (Australian Calculator Operation) members, "Big Apple" was derived from the code name "New-Yorke" of the prototype 8 MHz Saturn-based SoC in a reference to New York city, hence the names "Big apple", "Mid Apple" and "Little Apple". [12]
In computing and electronic systems, binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each digit is represented by a fixed number of bits, usually four or eight. Sometimes, special bit patterns are used for a sign or other indications.
In computer science, an integer is a datum of integral data type, a data type that represents some range of mathematical integers. Integral data types may be of different sizes and may or may not be allowed to contain negative values. Integers are commonly represented in a computer as a group of binary digits (bits). The size of the grouping varies so the set of integer sizes available varies between different types of computers. Computer hardware nearly always provides a way to represent a processor register or memory address as an integer.
In computing, a nibble (occasionally nybble, nyble, or nybl to match the spelling of byte) is a four-bit aggregation, or half an octet. It is also known as half-byte or tetrade. In a networking or telecommunication context, the nibble is often called a semi-octet, quadbit, or quartet. A nibble has sixteen (24) possible values. A nibble can be represented by a single hexadecimal digit (0
–F
) and called a hex digit.
The GE-600 series is a family of 36-bit mainframe computers originating in the 1960s, built by General Electric (GE). When GE left the mainframe business the line was sold to Honeywell, which built similar systems into the 1990s as the division moved to Groupe Bull and then NEC.
The Intel 4004 is a 4-bit central processing unit (CPU) released by Intel Corporation in 1971. Sold for US$60, it was the first commercially produced microprocessor, and the first in a long line of Intel CPUs.
The HP 48 is a series of graphing calculators designed and produced by Hewlett-Packard from 1990 until 2003. The series includes the HP 48S, HP 48SX, HP 48G, HP 48GX, and HP 48G+, the G models being expanded and improved versions of the S models. The models with an X suffix are expandable via special RAM and ROM cards. In particular, the GX models have more onboard memory than the G models. The G+ models have more onboard memory only. The SX and S models have the same amount of onboard memory.
The HP 49/50 series are Hewlett-Packard (HP) manufactured graphing calculators. They are the successors of the popular HP 48 series.
RPL is a handheld calculator operating system and application programming language used on Hewlett-Packard's scientific graphing RPN calculators of the HP 28, 48, 49 and 50 series, but it is also usable on non-RPN calculators, such as the 38, 39 and 40 series. Internally, it was also utilized by the 17B, 18C, 19B and 27S.
4-bit computing is the use of computer architectures in which integers and other data units are 4 bits wide. 4-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers or data buses of that size. A group of four bits is also called a nibble and has 24 = 16 possible values.
The HP-10B (F1636A) is a student business calculator introduced in 1987. The model of this calculator proved to compete well with the higher end RPN HP-12C.
The HP-12C is a financial calculator made by Hewlett-Packard (HP) and its successor HP Inc. as part of the HP Voyager series, introduced in 1981. It is HP's longest and best-selling product and is considered the de facto standard among financial professionals. There have been multiple revisions over the years, with newer revisions moving to an ARM processor running a software emulator of the original Nut processor. Critics claim that its 1980s technology is antiquated, but proponents point out that it is still the de facto and de jure in high finance.
The HP-15C is a high-end scientific programmable calculator of Hewlett-Packard's Voyager series produced between 1982 and 1989.
HP 39/40 series are graphing calculators from Hewlett-Packard, the successors of HP 38G. The series consists of six calculators, which all have algebraic entry modes, and can perform numeric analysis together with varying degrees of symbolic calculation. All calculators in this series are aimed at high school level students and are characterized by their ability to download APLETs or E-lessons. These are programs of varying complexity which are generally intended to be used in the classroom to enhance the learning of mathematics by the graphical and/or numerical exploration of concepts.
Paul Courbis de Bridiers de Villemor, aka Paul Courbis, is a French programmer, mostly known for reverse engineering the HP-28 and then the HP 48 series of calculators, and writing multiple articles and books disclosing his findings. These books had a surprising success in France.
A serial computer is a computer typified by bit-serial architecture – i.e., internally operating on one bit or digit for each clock cycle. Machines with serial main storage devices such as acoustic or magnetostrictive delay lines and rotating magnetic devices were usually serial computers.
The Capricorn family of microprocessors was developed by Hewlett-Packard in the late 1970s for the HP Series 80 scientific microcomputers. Capricorn was first used in the HP-85 desktop BASIC computer, introduced in January 1980. Steve Wozniak was inspired to build the Apple to be a computer like the HP 9830, and in 1976, he offered HP rights to the Apple computer. He was turned down and was given a release. When the calculator division started an 8-bit computer project called Capricorn, he left for Apple when he was not allowed to work on that project.
A half-carry flag is a condition flag bit in the status register of many CPU families, such as the Intel 8080, Zilog Z80, the x86, and the Atmel AVR series, among others. It indicates when a carry or borrow has been generated out of the least significant four bits of the accumulator register following the execution of an arithmetic instruction. It is primarily used in decimal (BCD) arithmetic instructions.
The HP Prime Graphing Calculator is a graphing calculator introduced by Hewlett-Packard in 2013 and manufactured by HP Inc. until the licensees Moravia Consulting spol. s r.o. and Royal Consumer Information Products, Inc. took over the continued development, manufacturing, distribution, marketing and support in 2022. It was designed with features resembling those of smartphones, such as a full-color touchscreen display and a user interface centered around different applications. It claims to be the world's smallest and thinnest CAS-enabled calculator currently available.
Christophe de Dinechin is a French computer scientist, with contributions in video games, programming languages and operating systems.
Erable is a computer algebra system (CAS) for a family of Hewlett-Packard graphing scientific calculators of the HP 40, 48 and HP 49/50 series.
If the exponent is negative, the exponent is encoded as "1000 - ABS(exponent)"