Halved cube graph | |
---|---|
Vertices | 2n–1 |
Edges | n(n – 1)2n–3 |
Automorphisms | n! 2n–1, for n > 4 n! 2n, for n = 4 (2n–1)!, for n < 4 [1] |
Properties | Symmetric Distance regular |
Notation | 1/2Qn |
Table of graphs and parameters |
In graph theory, the halved cube graph or half cube graph of dimension n is the graph of the demihypercube, formed by connecting pairs of vertices at distance exactly two from each other in the hypercube graph. That is, it is the half-square of the hypercube. This connectivity pattern produces two isomorphic graphs, disconnected from each other, each of which is the halved cube graph.
The construction of the halved cube graph can be reformulated in terms of binary numbers. The vertices of a hypercube may be labeled by binary numbers in such a way that two vertices are adjacent exactly when they differ in a single bit. The demicube may be constructed from the hypercube as the convex hull of the subset of binary numbers with an even number of nonzero bits (the evil numbers), and its edges connect pairs of numbers whose Hamming distance is exactly two. [2]
It is also possible to construct the halved cube graph from a lower-dimensional hypercube graph, without taking a subset of the vertices:
where the superscript 2 denotes the square of the hypercube graph Qn − 1, the graph formed by connecting pairs of vertices whose distance is at most two in the original graph. For instance, the halved cube graph of dimension four may be formed from an ordinary three-dimensional cube by keeping the cube edges and adding edges connecting pairs of vertices that are on opposite corners of the same square face.
The halved cube graph of dimension 3 is the complete graph K4, the graph of the tetrahedron. The halved cube graph of dimension 4 is K2,2,2,2, the graph of the four-dimensional regular polytope, the 16-cell. The halved cube graph of dimension five is sometimes known as the Clebsch graph, and is the complement of the folded cube graph of dimension five, which is the one more commonly called the Clebsch graph. It exists in the 5-dimensional uniform 5-polytope, the 5-demicube.
Because it is the bipartite half of a distance-regular graph, the halved cube graph is itself distance-regular. [3] And because it contains a hypercube as a spanning subgraph, it inherits from the hypercube all monotone graph properties, such as the property of containing a Hamiltonian cycle.
As with the hypercube graphs, and their isometric (distance-preserving) subgraphs the partial cubes, a halved cube graph may be embedded isometrically into a real vector space with the Manhattan metric (L1 distance function). The same is true for the isometric subgraphs of halved cube graphs, which may be recognized in polynomial time; this forms a key subroutine for an algorithm which tests whether a given graph may be embedded isometrically into a Manhattan metric. [4]
For every halved cube graph of dimension five or more, it is possible to (improperly) color the vertices with two colors, in such a way that the resulting colored graph has no nontrivial symmetries. For the graphs of dimension three and four, four colors are needed to eliminate all symmetries. [5]
The two graphs shown are symmetric Dn and Bn Petrie polygon projections (2(n − 1) and n dihedral symmetry) of the related polytope which can include overlapping edges and vertices.
n | Polytope | Graph | Vertices | Edges |
---|---|---|---|---|
2 | Line segment | 2 | – | |
3 | tetrahedron | 4 | 6 | |
4 | 16-cell | 8 | 24 | |
5 | 5-demicube | 16 | 80 | |
6 | 6-demicube | 32 | 240 | |
7 | 7-demicube | 64 | 672 | |
8 | 8-demicube | 128 | 1792 | |
9 | 9-demicube | 256 | 4608 | |
10 | 10-demicube | 512 | 11520 |
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex.
In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eight cubical cells. The tesseract is one of the six convex regular 4-polytopes.
In geometry, a hypercube is an n-dimensional analogue of a square and a cube. It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length. A unit hypercube's longest diagonal in n dimensions is equal to .
In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in n-dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahedron, and a 4-dimensional cross-polytope is a 16-cell. Its facets are simplexes of the previous dimension, while the cross-polytope's vertex figure is another cross-polytope from the previous dimension.
In the mathematical field of graph theory, the Desargues graph is a distance-transitive, cubic graph with 20 vertices and 30 edges. It is named after Girard Desargues, arises from several different combinatorial constructions, has a high level of symmetry, is the only known non-planar cubic partial cube, and has been applied in chemical databases.
Geometric graph theory in the broader sense is a large and amorphous subfield of graph theory, concerned with graphs defined by geometric means. In a stricter sense, geometric graph theory studies combinatorial and geometric properties of geometric graphs, meaning graphs drawn in the Euclidean plane with possibly intersecting straight-line edges, and topological graphs, where the edges are allowed to be arbitrary continuous curves connecting the vertices, thus it is "the theory of geometric and topological graphs". Geometric graphs are also known as spatial networks.
In graph theory, the hypercube graphQn is the graph formed from the vertices and edges of an n-dimensional hypercube. For instance, the cube graph Q3 is the graph formed by the 8 vertices and 12 edges of a three-dimensional cube. Qn has 2n vertices, 2n – 1n edges, and is a regular graph with n edges touching each vertex.
In geometry, demihypercubes are a class of n-polytopes constructed from alternation of an n-hypercube, labeled as hγn for being half of the hypercube family, γn. Half of the vertices are deleted and new facets are formed. The 2n facets become 2n(n−1)-demicubes, and 2n(n−1)-simplex facets are formed in place of the deleted vertices.
In mathematics, and particularly geometric graph theory, a unit distance graph is a graph formed from a collection of points in the Euclidean plane by connecting two points by an edge whenever the distance between the two points is exactly one. To distinguish these graphs from the larger family of their subgraphs, they may be called strict unit distance graphs or faithful unit distance graphs. As a hereditary family of graphs, they can be characterized by forbidden induced subgraphs. The unit distance graphs include the cactus graphs, the matchstick graphs and penny graphs, and the hypercube graphs. The generalized Petersen graphs are subgraphs of unit distance graphs.
In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces.
In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a 5-hypercube (penteract) with alternated vertices removed.
In geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces.
In geometry, a 6-demicube or demihexteract is a uniform 6-polytope, constructed from a 6-cube (hexeract) with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.
In graph theory, a division of mathematics, a median graph is an undirected graph in which every three vertices a, b, and c have a unique median: a vertex m(a,b,c) that belongs to shortest paths between each pair of a, b, and c.
Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes.
In the mathematical field of graph theory, the Clebsch graph is either of two complementary graphs on 16 vertices, a 5-regular graph with 40 edges and a 10-regular graph with 80 edges. The 80-edge graph is the dimension-5 halved cube graph; it was called the Clebsch graph name by Seidel (1968) because of its relation to the configuration of 16 lines on the quartic surface discovered in 1868 by the German mathematician Alfred Clebsch. The 40-edge variant is the dimension-5 folded cube graph; it is also known as the Greenwood–Gleason graph after the work of Robert E. Greenwood and Andrew M. Gleason (1955), who used it to evaluate the Ramsey number R(3,3,3) = 17.
In graph theory, a folded cube graph is an undirected graph formed from a hypercube graph by adding to it a perfect matching that connects opposite pairs of hypercube vertices.
In graph theory, a partial cube is a graph that is isometric to a subgraph of a hypercube. In other words, a partial cube can be identified with a subgraph of a hypercube in such a way that the distance between any two vertices in the partial cube is the same as the distance between those vertices in the hypercube. Equivalently, a partial cube is a graph whose vertices can be labeled with bit strings of equal length in such a way that the distance between two vertices in the graph is equal to the Hamming distance between their labels. Such a labeling is called a Hamming labeling; it represents an isometric embedding of the partial cube into a hypercube.
In seven-dimensional geometry, a cantic 7-cube or truncated 7-demicube as a uniform 7-polytope, being a truncation of the 7-demicube.
In the mathematical field of graph theory, the 26-fullerene graph is a polyhedral graph with V = 26 vertices and E = 39 edges. Its planar embedding has three hexagonal faces and twelve pentagonal faces. As a planar graph with only pentagonal and hexagonal faces, meeting in three faces per vertex, this graph is a fullerene. The existence of this fullerene has been known since at least 1968.